Skip to content

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks (https://arxiv.org/abs/2105.04206)

License

Notifications You must be signed in to change notification settings

WongKinYiu/yolor

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOR

implementation of paper - You Only Learn One Representation: Unified Network for Multiple Tasks

Unified Network

Developing... (weights)

Model Test Size APtest AP50test AP75test APStest APMtest APLtest batch1 throughput
YOLOR-P6 1280 54.1% 71.8% 59.3% 36.2% 58.1% 65.8% 76 fps
YOLOR-W6 1280 55.5% 73.2% 60.6% 37.6% 59.5% 67.7% 66 fps
YOLOR-E6 1280 56.4% 74.1% 61.6% 39.1% 60.1% 68.2% 45 fps
YOLOR-D6 1280 57.3% 75.0% 62.7% 40.4% 61.2% 69.2% 34 fps

To reproduce the results in the paper, please use this branch.

Model Test Size APtest AP50test AP75test APStest APMtest APLtest batch1 throughput
YOLOR-P6 1280 52.6% 70.6% 57.6% 34.7% 56.6% 64.2% 76 fps
YOLOR-W6 1280 54.1% 72.0% 59.2% 36.3% 57.9% 66.1% 66 fps
YOLOR-E6 1280 54.8% 72.7% 60.0% 36.9% 58.7% 66.9% 45 fps
YOLOR-D6 1280 55.4% 73.3% 60.6% 38.0% 59.2% 67.1% 34 fps
YOLOv4-P5 896 51.8% 70.3% 56.6% 33.4% 55.7% 63.4% 41 fps
YOLOv4-P6 1280 54.5% 72.6% 59.8% 36.6% 58.2% 65.5% 30 fps
YOLOv4-P7 1536 55.5% 73.4% 60.8% 38.4% 59.4% 67.7% 16 fps
Model Test Size APval AP50val AP75val APSval APMval APLval FLOPs weights
YOLOR-P6 1280 52.5% 70.6% 57.4% 37.4% 57.3% 65.2% 326G yolor-p6.pt
YOLOR-W6 1280 54.0% 72.1% 59.1% 38.1% 58.8% 67.0% 454G yolor-w6.pt
YOLOR-E6 1280 54.6% 72.5% 59.8% 39.9% 59.0% 67.9% 684G yolor-e6.pt
YOLOR-D6 1280 55.4% 73.5% 60.6% 40.4% 60.1% 68.7% 937G yolor-d6.pt
YOLOR-S 640 40.7% 59.8% 44.2% 24.3% 45.7% 53.6% 21G
YOLOR-SDWT 640 40.6% 59.4% 43.8% 23.4% 45.8% 53.4% 21G
YOLOR-S2DWT 640 39.9% 58.7% 43.3% 21.7% 44.9% 53.4% 20G
YOLOR-S3S2D 640 39.3% 58.2% 42.4% 21.3% 44.6% 52.6% 18G
YOLOR-S3DWT 640 39.4% 58.3% 42.5% 21.7% 44.3% 53.0% 18G
YOLOR-S4S2D 640 36.9% 55.3% 39.7% 18.1% 41.9% 50.4% 16G weights
YOLOR-S4DWT 640 37.0% 55.3% 39.9% 18.4% 41.9% 51.0% 16G weights

New training scheme: train 300 epochs only.

Model Test Size APtest AP50test AP75test APStest APMtest APLtest batch1 throughput
YOLOR-P6 1280 53.2% 70.8% 58.2% 35.3% 57.3% 64.6% 76 fps
YOLOR-W6 1280 54.7% 72.2% 59.8% 36.7% 58.7% 66.7% 66 fps
YOLOR-E6 1280 55.5% 73.1% 60.7% 37.9% 59.2% 67.2% 45 fps
YOLOR-D6 1280 56.1% 73.8% 61.4% 38.8% 59.9% 68.4% 34 fps

Installation

Docker environment (recommended)

Expand
# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:20.11-py3

# apt install required packages
apt update
apt install -y zip htop screen libgl1-mesa-glx

# pip install required packages
pip install seaborn thop

# install mish-cuda if you want to use mish activation
# https://github.com/thomasbrandon/mish-cuda
# https://github.com/JunnYu/mish-cuda
cd /
git clone https://github.com/JunnYu/mish-cuda
cd mish-cuda
python setup.py build install

# install pytorch_wavelets if you want to use dwt down-sampling module
# https://github.com/fbcotter/pytorch_wavelets
cd /
git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .

# go to code folder
cd /yolor

Colab environment

Expand
git clone -b paper https://github.com/WongKinYiu/yolor
cd yolor

# pip install required packages
pip install -qr requirements.txt

# install mish-cuda if you want to use mish activation
# https://github.com/thomasbrandon/mish-cuda
# https://github.com/JunnYu/mish-cuda
git clone https://github.com/JunnYu/mish-cuda
cd mish-cuda
python setup.py build install
cd ..

# install pytorch_wavelets if you want to use dwt down-sampling module
# https://github.com/fbcotter/pytorch_wavelets
git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .
cd ..

Prepare COCO dataset

Expand
cd /yolor
bash scripts/get_coco.sh

Prepare pretrained weight

Expand
cd /yolor
bash scripts/get_pretrain.sh

Testing

python test.py --img 1280 --conf 0.001 --iou 0.65 --batch 32 --device 0 --data data/coco.yaml --weights yolor-p6.pt --name yolor-p6_val

You will get the results:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.52471
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.70569
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.57419
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.37395
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.57292
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.65187
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.38975
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.65382
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.71349
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.58020
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.75261
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.82403

Training

Single GPU training:

python train.py --batch-size 8 --img 1280 1280 --data data/coco.yaml --cfg models/yolor-p6.yaml --weights '' --device 0 --name yolor-p6 --hyp hyp.scratch.1280.yaml --epochs 300

Multiple GPU training:

python -m torch.distributed.launch --nproc_per_node 2 --master_port 9527 train.py --batch-size 16 --img 1280 1280 --data data/coco.yaml --cfg models/yolor-p6.yaml --weights '' --sync-bn --device 0,1 --name yolor-p6 --hyp hyp.scratch.1280.yaml --epochs 300

Training schedule in the paper:

python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg models/yolor-p6.yaml --weights '' --sync-bn --device 0,1,2,3,4,5,6,7 --name yolor-p6 --hyp hyp.scratch.1280.yaml --epochs 300
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 tune.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg models/yolor-p6.yaml --weights 'runs/train/yolor-p6/weights/last_298.pt' --sync-bn --device 0,1,2,3,4,5,6,7 --name yolor-p6-tune --hyp hyp.finetune.1280.yaml --epochs 450
python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train.py --batch-size 64 --img 1280 1280 --data data/coco.yaml --cfg models/yolor-p6.yaml --weights 'runs/train/yolor-p6-tune/weights/epoch_424.pt' --sync-bn --device 0,1,2,3,4,5,6,7 --name yolor-p6-fine --hyp hyp.finetune.1280.yaml --epochs 450

Inference

python detect.py --source images/horses.jpg --weights yolor-p6.pt --conf 0.25 --img-size 1280 --device 0

You will get the results:

horses

Citation

@article{wang2021you,
  title={You Only Learn One Representation: Unified Network for Multiple Tasks},
  author={Wang, Chien-Yao and Yeh, I-Hau and Liao, Hong-Yuan Mark},
  journal={arXiv preprint arXiv:2105.04206},
  year={2021}
}

Acknowledgements

Expand