Large-Scale System Problems Detection by Mining
Console Logs

Wei Xu

Ling Huang
Armando Fox
David A. Patterson
Michael Jordan

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-103
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-103.html

July 21, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

The authors would like to thank Bill Bolosky, Richard
Draves, Jon Stearley, Byung-Gon Chun, Jaideep Chandrashekar,
Petros Maniatis, Peter Vosshall, Deborah

Weisser, Kimberly Keeton and Kristal Sauer for their
great suggestions on the early draft of the paper.

This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Services,
Cisco Systems, Facebook, Hewlett-Packard, Network
Appliance, and VMWare, and by matching funds

from the University of California Industry/University
Cooperative Research Program (UC Discovery) grant

COMO07-10240.

Large-Scale System Problems Detection by Mining Console Logs

Wei Xu* Ling Huang®

*UC Berkeley

Abstract

Surprisingly, console logs rarely help operators detect
problems in large-scale datacenter services, for they of-
ten consist of the voluminous intermixing of messages
from many software components written by independent
developers. We propose a general methodology to mine
this rich source of information to automatically detect
system runtime problems. We first parse console logs
by combining source code analysis with information re-
trieval to create composite features. We then analyze
these features using machine learning to detect opera-
tional problems. We show that our method enables analy-
ses that are impossible with previous methods because of
its superior ability to create sophisticated features. We
also show how to distill the results of our analysis to
an operator-friendly one-page decision tree showing the
critical messages associated with the detected problems.
We validate our approach using the Darkstar online game
server and the Hadoop File System, where we detect nu-
merous real problems with high accuracy and few false
positives. In the Hadoop case, we are able to analyze 24
million lines of console logs in 3 minutes. Our method-
ology works on textual console logs of any size and re-
quires no changes to the service software, no human in-
put, and no knowledge of the software’s internals.

1 Introduction

When a datacenter-scale service consisting of hundreds
of software components running on thousands of com-
puters misbehaves, developer-operators need every tool
at their disposal to troubleshoot and diagnose operational
problems. Ironically, there is one source of information
that is built into almost every piece of software that pro-
vides detailed information that reflects the original de-
velopers’ ideas about noteworthy or unusual events, but
is typically ignored: the humble console log.

Since the dawn of programming, developers have used
everything from printf to complex logging and moni-
toring libraries [7, 8] to record program variable val-
ues, trace execution, report runtime statistics, and even
print out full-sentence messages designed to be read by
a human—usually by the developer herself. However,
modern large-scale services usually combine large open-
source components authored by hundreds of develop-
ers, and the people scouring the logs—part integrator,

Armando Fox*

David Patterson* Michael Jordan*

tIntel Research Berkeley

part developer, part operator, and charged with fixing the
problem—are usually not the people who chose what to
log or why. (We’ll use the term operator to represent a
potentially diverse set of people trying to detect opera-
tional problems.) Furthermore, even in well-tested code,
many operational problems are dependent on the deploy-
ment and runtime environment and cannot be easily re-
produced by the developer. To make things worse, mod-
ern systems integrate external (often open source) com-
ponents that are frequently revised or upgraded, which
may change what’s in the logs or the relevance of certain
messages. Keeping up with this churn rate exacerbates
the operators’ dilemma. Our goal is to provide them with
better tools to extract value from the console logs.

As logs are too large to examine manually [13, 20] and
too unstructured to analyze automatically, operators typi-
cally create ad hoc scripts to search for keywords such as
“error”’ or “critical,” but this has been shown to be insuffi-
cient for determining problems [13, 20]. Rule-based pro-
cessing [22] is an improvement, but the operators’ lack of
detailed knowledge about specific components and their
interactions makes it difficult to write rules that pick out
the most relevant sets of events for problem detection.
Instead of asking users to search, we provide tools to au-
tomatically find “interesting” log messages.

Since unusual log messages often indicate the source
of the problem, it is natural to formalize log analysis as an
anomaly detection problem in machine learning. How-
ever, it is not always the case that the presence, absence
or frequency of a single type of message is sufficient to
pinpoint the problem; more often, a problem manifests
as an abnormality in the relationships among different
types of log messages (correlations, relative frequencies,
and so on). Therefore, instead of analyzing the words
in textual logs (as done, for example, in [25]), we cre-
ate features that accurately capture various correlations
among log messages, and perform anomaly detection on
these features. Creating these features requires augment-
ing log parsing with information about source code; our
method for doing this augmentation is part of our contri-
bution.

We studied logs and source code of many popular soft-
ware systems used in Internet services, and observed that
a typical console log is much more structured than it ap-
pears: the definition of its “schema” is implicit in the log

printing statements, which can be recovered from pro-
gram source code. This observation is key to our log
parsing approach, which yields detailed and accurate fea-
tures. Given the ubiquitous presence of open-source soft-
ware in many Internet systems, we believe the need for
source code is not a practical drawback to our approach.

Our contribution is a general four-step methodology
that allows machine learning and information retrieval
techniques to be applied to free-text logs to find the
“needles in the haystack” that might indicate operational
problems, without any manual input. Specifically, our
methodology involves the following four contributions:

1) A technique for analyzing source code to recover
the structure inherent in console logs;

2) The identification of common information in logs—
state variables and object identifiers—and the automatic
creation of features from the logs (exploiting the struc-
ture found) that can be subjected to analysis by a variety
of machine learning algorithms;

3) Demonstration of a machine learning and informa-
tion retrieval methodology that effectively detects un-
usual patterns or anomalies across large collections of
such features extracted from a console log;

4) Where appropriate, automatic construction of a vi-
sualization that distills the results of anomaly detection
in a compact and operator-friendly format that assumes
no understanding of the details of the algorithms used to
analyze the features.

The combination of elements in our approach, in-
cluding our novel combination of source code analysis
with log analysis and automatic creation of features for
anomaly detection, enables a level of detail in log analy-
sis that was previously impossible due to the inability of
previous methods to correctly identify the features nec-
essary for problem identification.

Our approach requires no changes to existing soft-
ware and works on existing textual console logs of any
size, and some of the more computationally expensive
steps are embarrassingly parallel, allowing us to run them
as Hadoop [2] map-reduce jobs using cloud computing,
achieving nearly linear speedup for a few dollars per run.

We evaluate our approach and demonstrate its capa-
bility and scalability with two real-world systems: the
Darkstar online game server [26] and the Hadoop File
System. For Darkstar, our method accurately detects per-
formance anomalies immediately after they happen and
provides hints as to the root cause. For Hadoop, we de-
tect runtime anomalies that are commonly overlooked,
and distill over 24 million lines of console logs (col-
lected from 203 Hadoop nodes) to a one-page decision
tree that a domain expert can readily understand. This
automated process can be done with Hadoop map-reduce
on 60 Amazon EC2 nodes within 3 minutes.

Section 2 provides an overview of our approach, Sec-

starting: xact 325 is COMMITTING
starting: xact 346 is ABORTING

1 CLog.info("starting: " + txn);

2 Class Transaction {

3 public void String toString () {
4 return "xact " + this.tid +

5 " is " + this.state;

6

7

}

Figure 1: Top: two lines from a simple console log. Bot-
tom: Java code that could produce these lines.

tion 3 describes our log parsing technique in detail, Sec-
tions 4 and 5 present our solutions for feature creation
and anomaly detection, Section 6 evaluates our approach
and discusses the visualization technique, Section 7 dis-
cusses extensions and provide suggestions to improve
log quality, Section 8 summarizes related work, and Sec-
tion 9 draws some conclusions.

2 Overview of Approach

2.1 Information buried in textual logs

Important information is buried in the millions of lines
of free-text console logs. To analyze logs automatically,
we need to create high quality features, the numerical
representation of log information that is understandable
by a machine learning algorithm. The following three
key observations lead to our solution to this problem.

Source code is the “schema” of logs. Although con-
sole logs appear in free text form, they are in fact quite
structured because they are generated entirely from a rel-
atively small set of log printing statements in the system.
Consider the simple console log excerpt and the source
code that generated it in Figure 1. Intuitively, it is
easier to recover the log’s hidden “schema” using the
source code information (especially for a machine). Our
method leverages source code analysis to recover the in-
herit structure of logs. The most significant advantage
of our approach is that we are able to accurately parse all
possible log messages, even the ones rarely seen in actual
logs. In addition, we are able to eliminate most heuristics
and guesses for log parsing used by existing solutions.

Common log structures lead to useful features. A
person usually reads the log messages in Figure 1 as a

Variable Distinct

values

Examples

Identifier§ transaction_id in Darkstar; block_id
in Hadoop file system; cache_key in the
Apache web server; task-id in Hadoop

map reduce.

many

State Transaction execution state in Darkstar; | few
Vars Server name for each block in Hadoop file
system; HTTP status code (200, 404);
POSIX process return values;

Table 1: State variables and identifiers

void startTransaction(}{ 1. Log Parsing

LOG.info(“starting” + transact); starting: xact (.*) is (.*)

}
Message template

starting: xact 325 is PREPARING type=1, tid=325, state=PREPARING
prepare: xact 325 is COMMITTING => type=2, tid=325, state= COMMITTING
comitted: xact 325 is COMMITTED type=3, tid=325, state=COMMITTED

Raw Console Log Structured Log

Source Code ﬂ a

2. Feature creation 3. Anomaly 4Visualization
At time window 100 detection

commTeD PREPARING .
Ay ALY 2
~ ! | =
ABORTED \ o =
COMMITTING g . :> =
State Ratio Vector i ﬁl E s =

i)

325: 111000000
326: 101000000
327 111010000

Decision Tree

PCA Anomaly Detection

Message Count Vectors

Figure 2: Overview of console log analysis work flow.

constant part (starting: xact ... is) and multiple
variable parts (325/326 and COMMITTING/ABORTING).
In this paper, we call the constant part the message type
and the variable part the message variable.

Message types—marked by constant strings in a log
message—are essential for analyzing console logs and
have been widely used in earlier work [16]. In our anal-
ysis, we use the constant strings solely as markers for
the message types, completely ignoring their semantics
as English words, which is known to be ambiguous [20].

Message variables carry crucial information as well.
In contrast to prior work that focuses on numerical vari-
ables [16, 20, 33], we identified two important types of
message variables for problem detection by studying logs
from many systems and by interviewing Internet service
developers/operators who heavily use console logs.

Identifiers are variables used to identify an object ma-
nipulated by the program (e.g., the transaction ids 325
and 346 in Figure 1), while state variables are labels that
enumerate a set of possible states an object could have in
program (e.g. COMMITTING and ABORTING in Figure 1).
Table 1 provides extra examples of such variables. We
can determine whether a given variable is an identifier
or a state variable progmatically based on its frequency
in console logs. Intuitively, state variables have a small
number of distinct values while identifiers take a large
number of distinct values (detailed in Section 4).

Message types and variables contain important run-
time information useful to the operators. However, lack-
ing tools to extract these structures, operators either ig-
nore them, or spending hours greping and manually ex-
amining log messages, which is tedious and inefficient.

Our accurate log parsing allows us to use structured
information such as message types and variables to au-
tomatically create features that capture information con-
veyed in logs. To our knowledge, this is the first work ex-
tracting information at this fine level of granularity from
console logs for problem detection.

Messages are strongly correlated. When log messages
are grouped properly, there is a strong and stable corre-
lation among messages within the same group. For ex-
ample, messages containing a certain file name are likely
to be highly correlated because they are likely to come

from logically related execution steps in the program.

A group of related messages is often a better indica-
tor of problems than individual messages. Previous work
grouped logs by time windows only, and the detection ac-
curacy suffers from noise in the correlation [13, 25, 33].
In contrast, we create message groups based on more
accurate information, such as the message variables de-
scribed above. In this way, the correlation is much
stronger and more readily encoded so that the abnormal
correlations also become easier to detect.

2.2 Workflow of our approach

Figure 2 shows the four steps in our general framework
for mining console logs.

1) Log parsing. We first convert a log message from
unstructured text to a data structure that shows the mes-
sage type and a list of message variables in (name, value)
pairs. We get all possible log message template strings
from the source code and match these templates to each
log message to recover its structure (that is, message
type and variables). Our experiments show that we can
achieve high parsing accuracy in real-world systems.

There are systems that use structured tracing only,
such as BerkeleyDB (Java edition). In this case, because
logs are already structured, we can skip this first step and
directly apply our feature creation and anomaly detec-
tion methods. Note that these structured logs still contain
both identifiers and state variables.'

2) Feature creation. Next, we construct feature vectors
from the extracted information by choosing appropriate
variables and grouping related messages. In this paper,
we focus on constructing the state ratio vector and the
message count vector features, which are unexploited in
prior work. In our experiments with two large-scale real-
world systems, both features yield good detection results.

3) Anomaly detection. Then, we apply anomaly de-
tection methods to mine feature vectors, labeling each
feature vector as normal or abnormal. We find that

'In fact, the last system in Table 2 (Storage Prototype) is an anony-
mous research prototype with built-in customized structured traces.
Without any context, even without knowing the functionality of the sys-
tem, our feature creation and anomaly detection algorithm successfully
discovered log segments that the developer found insightful.

System [Lang [Logger [Msg Construction [LOC [LOL [Vars [Parse [ID [ST
Operating system

Linux (Ubuntu) [C | custom | printk +printf wrap [7477k [70817 [70506 [Y [Y° [Y
Low level Linux services

Bootp C custom printf wrap 11k 322 220 Y N N
DHCP server C custom printf wrap 23k 540 491 Y YP Y
DHCP client C custom printf wrap Sk 239 205 Y YP Y
ftpd C custom printf wrap 3k 66 67 Y Y N
openssh C custom printf wrap 124k 3341 3290 Y Y Y
crond C printf printf wrap 7k 112 131 Y N Y
Kerboros 5 C custom printf wrap 44k 6261 4971 Y Y Y
iptables C custom printf wrap 52k 2341 1528 Y N Y
Samba 3 C custom printf wrap 566k 8461 6843 Y Y Y
Internet service building blocks

Apache2 C custom printf wrap 312k 4008 2835 Y Y Y
mysql C custom printf wrap 714k 5092 5656 Y YP | YP
postgresql C custom printf wrap 740k | 12389 7135 Y YP | YP
Squid C custom printf wrap 148k 2675 2740 Y Y Y
Jetty Java log4j string concatenation 138k 699 667 Y Y Y
Lucene Java custom custom log function 217k 143 159 Y? Y N
BDB (Java) Java custom custom structured trace 260k - - - Y N
Distributed systems

Hadoop Java custom log4j | string concatenation 173k 911 1300 Y Y Y
Darkstar Java jdk-log Java format string 90k 578 658 Y YP | YP
Nutch Java log4j string concatenation 64k 507 504 Y Y Y
Cassandra Java log4j string concatenation 46k 393 437 Y N Y
Storage Prototype | C custom custom structured trace -¢ -¢ -¢ -¢ Y Y

“Logger class is not consistent in every module, so we need to manually specify the logger function name for each module.
bSystem prints minimal amount of logs by default, so we need to enable debug logging.
“Source code not available, but logs are well structured so manual parsing is easy.

Table 2: Console logging in popular software systems. LOC = lines of codes in the system. LOL = number of log printing
statements. Vars = number of variables reported in log messages. Parse = whether our source analysis based parsing applies. ID =
whether identifier variables are reported. ST = whether state variables are reported.

the Principal Component Analysis (PCA)-based anomaly
detection method [5] works very well with both features.
This method is an unsupervised learning algorithm, in
which all parameters can be either chosen automatically
or tuned easily, eliminating the need for prior input from
the operators. Although we use this specific machine
learning algorithm for our case studies, it is not intrinsic
to our approach, and different algorithms utilizing differ-
ent extracted features could be readily “plugged in” to
our framework.

4) Visualization. Finally, in order to let system integra-
tors and operators better understand the PCA anomaly
detection results, we visualize results in a decision
tree [32]. Compared to the PCA-based detector, the de-
cision tree provides a more detailed explanation of how
the problems are detected, in a form that resembles the
event processing rules [9] with which system integrators
and operators are familiar.

2.3 Case study and data collection

We studied source code and logs from 22 widely de-
ployed open source systems. Table 2 summarizes the
results. Although these systems are distinct in nature,
developed in different languages by different developers

at different times, 20 of the 22 systems use free text logs,
and our source-code-analysis based log parsing applies to
all of the 20. Interestingly, we found that about 1%-5%
of code lines are logging calls in most of the systems,
but most of these calls are rarely, if ever, executed be-
cause they represent erroneous execution paths. It is al-
most impossible to maintain log-parsing rules manually
with such a large number of distinct logger calls, which
highlights our advantage of discovering message types
automatically from source code. On average, a message
reports a single variable. However, there are many mes-
sages, such as starting server that reports no vari-
ables, while other messages can report 10 or more.

Most C programs use printf style format strings for
logging, although a large portion uses wrapper functions
to generate standard information such as time stamps
and severity levels. These wrappers, even if customized,
can be detected automatically from the format string pa-
rameter. In contrast, Java programs usually use string
concatenation to generate log messages and often rely
on standard logger packages (such as log4j). Analyz-
ing these logging calls requires understanding data types,
which we detail in Section 3. Our source-code-analysis
based log parsing approach successfully works on most

System | Nodes Messages | Log Size
Darkstar 1 1,640,985 | 266 MB
Hadoop (HDFS) 203 | 24,396,061 | 2412 MB

Table 3: Data sets used in evaluation. Nodes=Number of
nodes in the experiments.

of them, and can find at least one of state variables and
identifiers in 21 of the 22 systems in Table 2 (16 have
both), confirming our assumption of their prevalence.

To be succinct yet reveal important issues in console
log mining, we focus further discussion on two repre-
sentative systems shown in Table 2: the Darkstar online
game server and the Hadoop File System (HDFS). Both
systems handle persistence, an important yet complicated
function in large-scale Internet services. However, these
two systems are different in nature. Darkstar focuses on
small, time sensitive transactions, while HDFS is a file
system designed for storing large files and batch process-
ing. They represent two major open source contributors
(Sun and Apache, respectively) with different coding and
logging styles.

We performed our experiments using Amazon’s Elas-
tic Compute Cloud (EC2). Table 3 summarizes the log
data sets we used. The Darkstar example revealed a be-
havior that strongly depended on the deployment envi-
ronment, which led to problems when migrating from
traditional server farms to clouds. In particular, we found
that Darkstar did not gracefully handle performance vari-
ations that are common in the cloud-computing environ-
ment. By analyzing console logs, we found the reason
for this problem, as discussed in detail in Section 6.2.

Satisfied with Darkstar results, to further evaluate our
method we analyzed HDFS logs, which are much more
complex. We collected HDFS logs from a Hadoop clus-
ter running on over 200 EC2 nodes, yielding 24 million
lines of logs. We successfully extracted log segments in-
dicating run-time performance problems that have been
confirmed by Hadoop developers.

All log data are collected from unmodified off-the-
shelf systems. Console logs are written directly to local
disks on each node and collected offline by simply copy-
ing log files, which shows the convenience (no instru-
mentation or configuration) of our log mining approach.
In the HDFS experiment, we used the default logging
level, while in the Darkstar experiment, we turned on de-
bug logging (FINER level in the logging framework).

3 Log Parsing with Source Code

In this section, we introduce our technique of using
source code as a reference for log parsing, which leads
to accurate recovery of structured information from all
possible message types.

Through log parsing, we want to detect message types
and extract message variables from textual log messages.

The inputs to the parser are the raw textual logs, and the
output includes a data structure containing the message
type, the names and data type of all message variables
(from source code), as well as the values of the variables
(from the log messages). Like other log parsers, we use
regular expressions; unlike other log parsers, the regu-
lar expressions we use are automatically generated from
source code analysis. We call these regular expressions
message templates.

Our parsing method involves two major steps. In the
first step, the static source code analysis step, we gen-
erate all possible message templates from source code.
This is a static analysis, which only needs to be done
once for each source code version. In the second step,
the log parsing step, for each log message, we choose the
best matching message template generated from the first
step and use it to extract message variables.

We show that our source code analysis based approach
is not only elegant, but also achieves much higher ac-
curacy than existing log analysis methods. We want to
emphasize that the accuracy improvement is not an in-
cremental improvement, but in fact enables a new set of
analysis that is traditionally only possible on structured
traces. We show the result in Section 6.1.

3.1 Static source code analysis

In this step, we analyze source code to automatically gen-
erate message templates (regular expressions). We first
introduce a naive approach and discuss the problems with
it. Then we discuss how we fix these problems by lever-
aging type information in source code. The input to this
step is source code of the entire system and the output is
all possible message templates.

Our technique is general and readily applicable to a
variety of programming languages. We implemented our
source code analyzer for C and Java. It is relatively
easy to extract message templates from C code, as most
messages are formatted with printf style format strings.
However, it is much harder to handle object oriented lan-
guage like Java, which we will discuss in detail in this
section. We use Java syntax to make the examples con-
crete.

3.1.1 Challenges of extracting message templates

A naive method of extracting message templates is
to grep all logging calls, and to convert the format
strings to regular expressions. This approach works
well in C code (where the equivalent logger call is
simply printf("starting:
tid, state);). However, when applied to modern
object oriented languages, this naive approach has the
following three problems that significantly limit its ca-
pability to construct useful features for further detection.
For example, the following log printing statement

LOG.info ("starting:

xact %d is %s",

xact " +

Source Parsing

‘ Partial msg template extraction ’

‘ Type resolution

l:> starting: (.*) [transact][Transaction] [Participant.java:345]

Partial message template

& % starting: xact (.*) is (.*)

[tid,state][int,String]

T T ‘ Type information extraction

[at Participant.java:345]

starting: xact (.*) is (.*) at node (.*)

Transaction

Source Code AST

=

xact (¥} is (.*) [at Participant.java:345]
[tid, state][int, String]

SubTransction xact (.*)is {.*) at (.*)

[tid, state, node][int, String, Node]

[tid, state, node] [int, String, Node]

(d)

(b) Complete message templates

toString Table

Transaction

4
SubTransaction TrﬁactExec (©

Class Hierarchy Table

Figure 3: Source code analysis for log template extraction.

transact.tid + " is " + transact.state);
(1)

generates log messages such as

xact 325 is COMMITTING
starting: xact 346 is ABORTING (2)
From line (1) it is much easier to separate string constant
part (starting: xact and is) from the two variables
(transact.tid and transact.state) than guessing
the structure from log messages directly. It is straight-
forward to construct a regular expression that matches
the log messages in (2):

starting:

starting:

xact (.x) is (.*) (3)

The first problem is that the name 1L0G in (1) is the
name of logger object, not the logger class. Although
it is a good practice to use consistent name for all log-
ger objects, programmers do not always do so. Thus, it
requires manual effort to find all logger object names to
grep on.

Secondly, in object oriented languages, rather than
accessing each field of an object explicitly, most pro-
grammers will define how an object appears in logs in
the class of that object (e.g., the toString () method
in Java). For example, if transact is an object of class
Transaction, which has a toString () method
public void String toString() {

return "xact "+this.tid+ " is
"+this.state;

} (4)
Then the logging call (1) is usually written as
LOG.info ("starting: " + transact); (5)

Logging call (5) generates exactly the same log mes-
sages as those in (2), but the naive method of grep-ing
will only generate regular expression as starting:
(.*). Although it matches messages in (2), the resulting
unparsed string "xact 346 is ABORTING" does not
recover enough structures, as both xact_id and status

are still buried in unstructured texts.

The last but more significant problem with the
naive approach is the class inheritances. For example,
the class of Transaction might have a sub-class
SubTransaction and transact in (5) is declared
as Transaction, but it is actually an object of
SubTransaction, whose toString () method is
public void String toString() {
return "tid="+this.tid+ "
state="+this.state +" execution node =
" 4+ this.node;

} (6)
In this case, message template generated by the naive
method fails to match the message.

In summary, naively grepping logger calls fails to ex-
tract important information available in the source code
(e.g., tostring () definitions and class hierarchy), so it
has limited power to recover enough structures from con-
sole logs to support our feature construction. All three
problems above suggest that we need a better way to
make use of type information in all object oriented lan-
guages.

3.1.2 Our solution

Figure 3 gives an overview of our technique that fully
utilizes type information for log parsing.

Source parsing. We first parse source code to con-
struct an abstract syntax tree (AST) [1]. ASTs, orig-
inally developed for compiler optimization, provide a
machine friendly data structure for traversing and ana-
lyzing source code. ASTs are well studied and widely
used in source code analysis. Open source tools exist
to construct ASTs from almost every programming lan-
guage. In fact, we make use of the AST implementations
built-in to the Eclipse IDE [23] for its auto-completion,
language-aware search, and many advanced editor fea-

tures.

Partial message template extraction. We first traverse
the AST to extract partial message templates. Unlike
in the naive approach, we know the type of each sym-
bol from the AST, so we are able to look for the log-
ger class instead of matching the logger object name.
In this way, we naturally solve the first problem of the
naive approach: the log miners no longer need to specify
names of logger objects, but only the logger class, which
is usually the same throughout the entire software sys-
tem. Even better, common logger class types (e.g., log4j
loggers [8]) can be automatically detected by examining
the library the software uses.

In our example, we can extract the partial message
template shown in Box (a) in Figure 3 from the logger
call (5). Different from the result of the naive approach
(3), we augment the template with names and types of
message variables, which are crucial to solve the second
and third problems of the naive approach. We also record
the location of each logger call in the source code (file
name and line number).

Type information extraction. Having variable type in-
formation, we can find the definition of the toString ()
method for the message variable. For example, know-
ing transact is of type Transaction, we know how
it would appear in a log message by looking at the
toString () method of the Transaction class.

We discover the tostring() definitions by doing
a second traversal on the AST, during which we ex-
tract toString templates from toString () methods of
all classes (with toString () being defined) and build
a global toString table. In our example, Box (b) in Fig-
ure 3 shows the toString templates from toString ()
methods shown in (4) and (6).

Due to the importance of class hierarchy information,
we do a third traversal on AST to build the Class Hierar-
chy table. Box (c) in Figure 3 shows an example.

Although logically we have three traversals on AST,
in practice, we can do all three in a single pass, reducing
running time.

Type resolution. Having toString table and Class Hier-
archy table, for each partial message template containing
non-primitive variables (e.g., object of a class), we con-
sult the toString Table to find the toString template of
that class, and substitute it into the partial message tem-
plate. In Figure 3 , by substituting toString template of
Transaction (Box (b)) into the partial template in Box
(a), we get the first complete message template in Box
(d).

If the tostring () method was not explicitly defined
in Transaction class, we would use the Class Hier-
archy Table to see if toString () method is defined
in super classes. We do this recursively until either
toString () method is found or the root of the hier-

archy tree (in Java, it is the java.lang.Object class)
is reached, in which case it is generated as a unparsed
string (.).

The sub-classing problem is also handled in this step.
We find all descendants of a declared class. If there
is a toString () method defined in any sub-classes,
we generate a message template as if the sub-class
is used instead of the declared class. For example,
as SubTransaction is a sub-class of Transaction,
we also generate the second message template in Box
(d) of Figure 3 by substituting toString template of
SubTransaction into the partial message template in
Box (a) of Figure 3 . We do this for every sub-class of
Transaction known at compile time.

Last thing to mention is that we do the type resolu-
tion step recursively. For example, in the second mes-
sage template of Box (d) in Figure 3 , variable node is of
type Node, not a primitive type, so we recurse and sub-
stitute in the toString template of Node. We do this until
the type of every variable becomes a primitive type or
unparsed strings. We also limit the maximum depth of
recursions to avoid (self or mutual) recursive type defini-
tions.

3.2 Runtime log parsing

Having all message templates (i.e. regular expressions)
generated, we need to find the matching message tem-
plate for each log message and use the template to re-
cover structured information from each log message. The
input to this step is a log message text, and output is the
message type and list of message variables (name, data
type, and value) contained in this message.

Log parsing as reverse-index search. Unlike the pre-
vious step, which is offline and only executed once,
we need to parse every log message. Thus efficiency
is the major concern. We use reverse-index search to
find the matching regular expression. Reverse-index is a
well studied technique in information retrieval [18], and
widely used in search engines and many other software
systems. The index is built off-line and can handle online
queries very efficiently. We used Apache Lucene [10], a
widely used open source text search toolkit to build and
search the message template index. The index is typically
small (from hundreds of kilobytes to a few megabytes)
and completely fits in memory, providing fast search.
We construct an index query from each log message
by removing all numbers and special symbols. This is
a heuristic commonly used in much literature on log
parsing [16, 28]. However, unlike previous work, we
only temporarily remove the numbers for constructing
the query, and they are retained in final parsing result.
Reverse-index search returns a (usually small) set of
results, sorted by the relevance scores, with the most
“similar” match first. We pick the top result, and match
it against the original log text. If it matches, we use it to

extract message variables; otherwise, we continue to try
the next one until we find a matching one. The matching
template is used to extract the message variables.

Scaling log parsing with map-reduce. Even with effi-
cient reverse-index searches, the parsing step is still time
consuming for large scale systems that generate vast of
logs. We tackle this problem by implementing the log
parsing step as a Hadoop map-reduce job. The imple-
mentation is straightforward. The reverse index is dis-
seminated and loaded into memory in every map-reduce
worker node at the beginning of job. The job has a map
stage to process each message with the log parser de-
scribed in the previous section. The reduce stage pro-
vides flexible ways of grouping logs, and computes vari-
ous aggregates to construct features. We show our exam-
ple of using the reduce stage in Section 4.1 and 4.2.

3.3 Discussion: Subtleties in log parsing

Our source code analysis approach eliminates many
heuristics and guesses in existing log analysis systems,
and provides a systematic way to recovering structured
information in logs with high accuracy. However, like all
systems involving source code or free text analysis, it is
inevitable to deal with subtle issues. We discuss the most
important subtleties in our solution in this section.

Robustness in corner cases. Our source code anal-
ysis is indeed trying to use static program analysis to
predict what the log output looks like, a runtime prop-
erty. Thus, it is impossible to correctly handle all cases.
Our parsing algorithm handles many language-specific
“idioms”. For example, in our Java parser, we han-
dle conditionals (a>0?"yes":"no"), array dumpings
(Arrays.deeoToString (array)), and so on. For
those hard cases, such as loops and recursive calls, we
make our technique robust by allowing it to fall back to
unparsed string (.) . In the real systems we studied, un-
handled toString () methods are very rare and cause
little problem in the end results.

Type not specific. Sometimes programmers use very
general types, such as Object in Java. In this case, ev-
ery class is its potential subclass, which causes our type
resolution step to fail. Thus we set a limit the number
of all descendants of a class. For example, in Java, we
set the limit to 100. We fall back to unparsed strings
if we exceed that limit. We choose the number because
it is large enough to accommodate all logs we studied,
while small enough to filter out classes in JDK with lots
of subclasses, such as 0bject and GUI related classes
(AWT and Swing). In fact, we rarely see the case of an
object defined in a very general type. We believe that
stronger typing requirement and features (such as gener-
ics) in modern object oriented languages strongly dis-
courage programmers from declaring an object in a very

general class.

Ambiguity and bad logging practices. Although most
log messages are insightful, we found some bad logging
practices, which are not only ambiguous to our parsing
algorithms, but also are meaningless to human readers.

For example, sometimes two or more log printing
statements generate exactly the same log messages. We
treat them the same, and consistently assume the message
type to be one of them. We believe this is not a prob-
lem, because these messages types are indistinguishable
by human readers as well.

In a more extreme case, some logger calls contain only
message variable of a primitive type without any constant
label. These messages are usually leftovers from the de-
bugging phase. There is no way, for either human or ma-
chine, to figure out where they come from, so we simply
ignore these messages.

4 Feature Creation

This section describes our technique for constructing fea-
tures from parsed logs. We focus on two features, the
state ratio vector and the message count vector, based
on state variables and identifiers (see Section 2.1), re-
spectively. The state ratio vector is able to capture the
aggregated behavior of the system over a time window.
The message count vector helps detect problems related
to individual operations. Both features describe message
groups constructed to have strong correlations among
their members. The features faithfully capture these cor-
relations, which are often good indicators of runtime
problems. Although these features are from the same
log, and similar in structure, they are constructed inde-
pendently, and have different semantics.

4.1 State variables and state ratio vectors

State variables can appear in a large portion of log mes-
sages. In fact, 32% of the log messages from Hadoop and
28% of messages from Darkstar contain state variables.

In many systems, during normal execution the relative
frequency of each value of a state variable in a time win-
dow usually stays the same. For example, in Darkstar, the
ratio between ABORTING and COMMITTING is very stable
during normal execution, but changes significantly when
a problem occurs. Notice that the actual number does not
matter (as it depends on workload), but the ratio among
different values matters.

We construct state ratio vectors y to encode this corre-
lation: Each state ratio vector represents a group of state
variables in a time window, while each dimension of the
vector corresponds to a distinct state variable value , and
the value of the dimension is how many times this state
value appears in the time window.

In creating features based on state variables we used
an automatic procedure that combined two desiderata: 1)
message variables should be frequently reported, but 2)

Algorithm 1 Message count vector construction

1. Find all message variables reported in the log with the

following properties:

a. Reported many times;

b. Has many distinct values;

c. Appears in multiple message types.

2. Group messages by values of the variables
chosen above.

3. For each message group, create a message count
vector y = [y1, Y2, - - - , Yn], Wwhere y; is the number of
appearances of messages of type ¢ (1 =1...n)
in the message group.

they should range across a small constant number of dis-
tinct values that do not depend on the number of mes-
sages. Specifically in our experiments, we chose state
variables that were reported at least 0.2V times, with N
the number of messages, and had a number of distinct
values not increasing with N for large values of N (e.g.,
more than a few thousand). Our results were not sensitive
to the choice of 0.2.

The time window size is also automatically deter-
mined. Currently we choose a size that allows the vari-
able to appear at least 10D times in 80% of all the time
windows, where D is the number of distinct values. This
choice of time window allows the variable to appear
enough times in each window to make the count sta-
tistically significant [4] while keeping the time window
small enough to capture transient problems. We tried
with other parameters than 10 and 80% and we did not
see a significant change in detection results.

We stack all n-dimensional y’s from m time windows
to construct the m x n state ratio matrix Y °.

4.2 Identifiers and message count vectors

Identifier are also prevalent in logs. For example, almost
50% of messages in HDFS logs contain identifiers. We
observe that all log messages reporting the same identi-
fier convey a single piece of information about the iden-
tifier. For instance, in HDFS, there are multiple log mes-
sages about a block when the block is allocated, written,
replicated, or deleted. By grouping these messages, we
get the message count vector, which is similar to an exe-
cution path [7] (from custom instrumentation).

To form the message count vector, we first automati-
cally discover identifiers, then group together messages
with the same identifier values, and create a vector per
group. Each vector dimension corresponds to a different
message type, and the value of the dimension tells how
many messages of that type appear in the message group.

The structure of this feature is analogous to the bag
of words model in information retrieval [6]. In our ap-
plication, the “document” is the message group. The di-
mensions of the vector consist of the union of all useful

Feature Rows Columns
Status ratio matrix Y *® time window | state value
Message count matrix Y | identifier message type

Table 4: Semantics of rows and columns of features

message types across all groups (analogous to all possi-
ble “terms”), and the value of a dimension is the number
of appearances of the corresponding message types in a
group (corresponding to “term frequency”).

Algorithm 1 summarizes our three-step process for
feature construction. We now try to provide intuition be-
hind the design choices in this algorithm.

In the first step of the algorithm, we automatically
choose identifiers (we do not want to require operators
to specify a search key). The intuition is that if a vari-
able meets the three criteria in step 1 of Algorithm 1, it
is likely to identify object such as transactions. The fre-
quency/distinct value pattern of identifiers is very differ-
ent from other variables, so it is easy to discover identi-
fiers 2. We have very few false selections in all data sets,
and the small number of false choices is easy to eliminate
by a manual examination.

In the second step, the message group essentially de-
scribes an execution path, with two major differences.
First, not every processing step is necessarily represented
in the console logs. Since the logging points are hand
chosen by developers, it is reasonable to assume that
logged steps should be important for diagnosis. Second,
correct ordering of messages is not guaranteed across
multiple nodes, due to unsynchronized clocks across
many computers. This ordering might be a problem
for diagnosing synchronization-related problems, but it
is still useful in identifying many kinds of anomalies.

In the third step, we use the bag of words model [6]
to represent the message group because: 1) it does not
require ordering among terms (message types), and 2)
documents with unusual terms are given more weight in
document ranking. In our case, the rare log messages are
indeed likely to be more important.

We gather all the message count vectors to construct
message count matrix Y™ as an m x n matrix where each
row is a message count vector y, as described in step 3
of Algorithm 1. Y™ has n columns, corresponding to n
message types that reported the identifier (analogous to
“terms”). Y™ has m rows, each of which corresponds to
a message group (analogous to “document”).

Although the message count matrix Y™ has com-
pletely different semantics from the state ratio matrix Y*,
both can be analyzed using matrix-based anomaly detec-
tion tools (see Section 5). Table 4 summarizes the se-
mantics of the rows and columns of each feature matrix.

2Like the state variable case, identifiers are chosen as variables re-
ported at least 0.2N times, where NN is total number of messages. We
also require the variables have at least 0.02/N distinct values, and re-
ported in at least 5 distinct messages types.

- -
o (o))
o o

COMMITTING /sec
S

%

40 60 80 100
ACTIVE per sec

Figure 4: The intuition behind PCA detection with simpli-

fied data. We plot only two dimensions from the Darkstar state

variable feature. It is easy to see high correlation between these

two dimensions. PCA determines the dominant normal pattern,

separates it out, and makes it easier to identify anomalies.

20

4.3 Implementing feature creation algorithms

To improve efficiency of our feature generation algo-
rithms in map-reduce, we tailored the implementation.
The step of discovering state variables and/or identifiers
(the first steps in Section 4.1 and 4.2) is a single map-
reduce job that calculates the number of distinct values
for all variables and determines which variables to in-
clude in further feature generation steps. The step of con-
structing features from variables is another map-reduce
job with log parsing as the map stage and message group-
ing as the reduce stage. For the state ratio , we sort
messages by time stamp, while for the message count
vector, we sort by identifier values. Notice that the map
stage (parsing step) only needs to output the required data
rather than the entire text message, resulting in huge I/O
savings during the data shuffling and sorting before re-
duce. Feature creation time is negligible when compared
to parsing time.

S Anomaly Detection

We use anomaly detection methods to find unusual pat-
terns in logs. In this way, we can automatically find
log segments that are most likely to indicate problems.
Given the feature matrices we construct, outlier detec-
tion methods can be applied to detect anomalies con-
tained in the logs. We have investigated a variety of such
methods and have found that Principal Component Anal-
ysis (PCA) [5, 15] combined with term-weighting tech-
niques from information retrieval [21, 24] yields excel-
lent anomaly detection results on both feature matrices,
while requiring little parameter tuning.

PCA is a statistical method that captures patterns in
high-dimensional data by automatically choosing a set of
coordinates—the principal components—that reflect co-
variation among the original coordinates. We use PCA to
separate out repeating patterns in feature vectors, thereby
making abnormal message patterns easier to detect. PCA
has runtime linear in the number of feature vectors; there-

10

Feature data sets n |k
Darkstar - message count 18 | 3
Darkstar - state ratio 6| 1
HDEFS - message count 28 | 4
HDEFS - state ratio 202 | 2

Table 5: Low effective dimensionality of feature data. n = Di-
mensionality of feature vector y; k = Dimensionality required
to capture 95% of variance in the data. In all of our data, we
have k < n, exhibiting low effective dimensionality.

fore, detection can scale to large logs.

Intuition behind PCA anomaly detection. (The math-
challenged may want to skip to the results in Section 6.)
By construction, dimensions in our feature vectors are
highly correlated, due to the strong correlation among
log messages within a group. We aim to identify abnor-
mal vectors that deviate from such correlation patterns.
Figure 4 illustrates a simplified example using two di-
mensions (number of ACTIVE and COMMITTING per sec-
ond) from Darkstar state ratio vectors. We see most data
points reside close to a straight line (a one-dimensional
subspace). In this case, we say the data have low ef-
fective dimensionality. The axis S, captures the strong
correlations between the two dimensions. Intuitively, a
data point far from the S; (such as point A) shows un-
usual correlation, and thus represents an anomaly. In
contrast, point B, although far from most other points,
resides close to the Sy, and is thus normal. In fact, both
ACTIVE and COMMITTING are larger in this case, which
simply indicates that the system is busier.

Indeed, we do observe low effective dimensionality in
the feature matrices Y*® and Y in many systems. Ta-
ble 5 shows k, the number of dimensions required to cap-
ture 95% of the variance in data 3. Intuitively, in the case
of the state ratio , when the system is in a stable state, the
ratios among different state variable values are roughly
constant. For the message count vector, as each dimen-
sion corresponds to a certain stage in the program and
the stages are determined by the program logic, the mes-
sages in a group are correlated. The correlations among
messages, determined by the normal program execution,
result in highly correlated dimensions for both features.

In summary, PCA captures dominant patterns in data
to construct a (low) k-dimensional normal subspace S,
in the original n-dimensional space. The remaining
(n — k) dimensions form the abnormal subspace S,. By
projecting the vector y on S, (separating out its compo-
nent on Sy), it is much easier to identify abnormal vec-
tors. This forms the basis for anomaly detection [5, 15].

Detecting anomalies. Intuitively, we use the “distance”
from the end point of a vector y to the normal subspace
Sy to determine whether y is abnormal. This can be

3This is a common heuristic for determining k in PCA detec-
tors [14]; we use this number in all of our experiments.

140

count

15

17 18 19

16
Threshold Qﬂ

Figure 5: Empirical distribution of threshold Q. obtained by
the bootstrapping algorithm of 4000 round on Hadoop message
count matrix Y.

formalized by computing the squared prediction error
SPE = ||ly,||? (the squared length of vector y,), where
Y. is the projection of y onto the abnormal subspace
S., and can be computed as y, = (I — PPT)y, where
P = [vy,Vva,..., V], is formed by the first k principal
components chosen by PCA algorithm.

As Figure 4 shows, abnormal vectors are typically far
away from the normal subspace S;. Thus, the “detection
rule” is simple: we mark y is abnormal if

ey

where (), denotes the threshold statistic for the SPE
residual function at the (1 — «) confidence level.

SPE = [[ya[* > Qa,

Automatically determine detection threshold. To
compute (), we make use of the ()-statistic, a well-
known test statistic for the SPE residual function [12].
The computed threshold @), guarantees that the false
alarm probability is no more than o under the assump-
tion that data matrix Y has a multivariate Gaussian
distribution. However, as pointed out by Jensen and
Solomon [12], the @-statistic is robust even when the un-
derlying distribution of the data differs substantially from
Gaussian. Figure 5 shows the empirical distribution of
Q.. obtained by 4000 round bootstraping algorithm* on
the Hadoop message count matrix Y™. We clearly see
that (), approximately follows a Gaussian distribution
with a small variance, which confirms our assumption
that @, is stable with our data sets.

The choice of the confidence parameter « for anomaly
detection has been studied in previous work [15], and
we follow standard recommendations in choosing o
0.001 in our experiments. We found that our detection
results are not sensitive to this parameter choice.

Improving PCA detection results. Our message count
vector is constructed in a way similar to the bag-of-words

4Bootstrapping is a standard statistical sampling method for esti-
mating the empirical distribution of the observed data.

11

System | Total Log | Failed | Failed %
HDFS | 24,396,061 | 29,636 0.121%
Darkstar | 1,640,985 35 0.002%

Table 6: Parsing accuracy. Parse fails on a message when we
cannot find a message template that matches the message and
extract message variables.

model, so it is natural to consider term weighting tech-
niques from information retrieval. We applied Term Fre-
quency / Inverse Document Frequency (TF-IDF), a well-
established heuristic in information retrieval [21, 24], to
pre-process the data. Instead of applying PCA directly to
the feature matrix Y™ we replace each entry y; ; in Y™
with a weighted entry w; ; = y; j log(n/df;), where df;
is total number of message groups that contain the j-th
message type. Intuitively, multiplying the original count
with the IDF reduces the weight of common message
types that appear in most groups, which are less likely
to indicate problems. We found this step to be essential
for improving detection accuracy.

TF-IDF does not apply to the state ratio feature. This is
because the state ratio matrix is a dense matrix that is not
amenable to an interpretation as a bag-of-words model.
However, applying the PCA method directly to Y* gives
good results on the state ratio feature.

6 Evaluation and Visualization

We first show the accuracy and scalability achieved by
our log parsing method (Section 6.1) and then discuss
our experiences with the two real-world systems.

We began our experiments of problem detection with
Darkstar, in which both features give simple yet insight-
ful results (Section 6.2). Satisfied with these results,
we applied our techniques to the much more complex
HDFS logs. We also achieve high detection accuracy
(Section 6.3). However, the results are less intuitive to
system operators and developers, so we developed a de-
cision tree visualization method, which summarizes the
PCA detection results in a single, intuitive picture (Sec-
tion 6.4) that is more operator friendly because the tree
resembles the rule-based event processing systems oper-
ators use [9].

6.1 Log parsing accuracy and scalability

Accuracy. Table 6 shows that our log parsing method
achieves over 99.8% accuracy on both systems. Specif-
ically, our technique successfully handled rare messages
types, even those that appeared only twice in over 24 mil-
lion messages in HDFS. On the contrary, word-frequency
based console log analysis tools, such as SLCT [30], do
not recover either of the features we use in this paper.
State variables are too common to be separated from con-
stant strings by word frequency only. In addition, these
tools ignore all rare messages, which are required to con-

10°

20 40 6! 80 100

Number of nodes
Figure 6: Scalability of log parsing with number of nodes
used. The x-axis is the number of nodes used, while the y-axis
is the number of messages processed per minute. All nodes are
Amazon EC2 high-CPU medium instances. We used the HDFS
data set (described in (Table 3) with over 24 million lines. We
parsed raw textual logs and generated the message count vec-
tor feature (see Section 4.2). Each experiment was repeated 4

times and the reported data point is the mean.

struct message count vectors.

There are only a few message types that our parser
fails to handle. Almost all of these messages contain long
string variables. These long strings may overwhelm the
constant strings we are searching for, preventing reverse
index search from finding the correct message template.
However, these messages typically appear at the initial-
ization or termination phase of a system (or a subsystem),
when the state of the system is dumped to the console.
Thus, we did not see any impact of missing these mes-
sages on our detection results.

We believe the accuracy of our approach to parsing is
essential; only with an accurate parsing system can we
extract state variables and identifiers—the basis for our
feature construction—from textual logs. Thus, we con-
sider the requirement of access to source code to be a
small price to pay (especially given that many modules
are open-source), given the high quality parsing results
that our technique produces.

Scalability. We evaluated the scalability of our log pars-
ing approach with a varying number of EC2 nodes. Fig-
ure 6 shows the result: Our log parsing and feature ex-
traction algorithms scale almost linearly with up to about
50 nodes. Even though we parsed all messages gener-
ated by 200 HDFS nodes (with aggressive logging) over
48 hours, log parsing only takes less than 3 minutes with
50 nodes, or less than 10 minutes with 10 nodes. When
we use more than 60 nodes, the overhead of index dis-
semination and job scheduling dominate running time.

6.2 Darkstar experiment results

As mentioned in Section 2.3, we observed high perfor-
mance (i.e., client side response time) variability when
deploying the Darkstar server on a cloud-computing en-
vironment such as EC2 during performance disturbances,
especially for CPU contention. We wanted to see if we
could understand the reason for this high performance

12

variability solely from console logs. Indeed, we were
unfamiliar with Darkstar, so our setting was realistic as
the operator often knows little about system internals.

In the experiment, we deployed an unmodified Dark-
star 0.95 distribution on a single node (because the Dark-
star version we use supports only one node). Darkstar
does not log much by default, so we turned on the debug-
level logging. We deployed a simple game, DarkMud,
provided by the Darkstar team, and created a workload
generator that emulated 60 user clients in the DarkMud
virtual world performing random operations such as flip-
ping switches, picking up and dropping items. The client
emulator recorded the latency of each operation. We
ran the experiment for 4800 seconds and injected a per-
formance disturbance by capping the CPU available to
Darkstar to 50% of the normal level during time 1400 to
1800.

Detection by state ratio vectors. The only state variable
chosen by our feature generation algorithm is state,
which is reported in 456,996 messages (about 28% of
all log messages in our data set). It has 8 distinct val-
ues, including PREPARING, ACTIVE, COMMITTING,
ABORTING and so on, so our state ratio matrix Y * has
8 columns (dimensions). The time window (automati-
cally determined according to Section 4.1) is 3 seconds;
we restricted the choice to whole seconds.

Figures 7 (a) and (b) show the results between time
1000 and 2500, where plot (a) displays the average la-
tency reported by the client emulator, which acts as a
ground truth for evaluating our method, and plot (b) dis-
plays the PCA anomaly detection results on the state ra-
tio matrix Y?®. We see that anomalies detected by our
method during the time interval (1400, 1800) match the
high client-side latency very well; i.e., the anomalies de-
tected in the state ratio matrix correlate very well with
the increases in client latency. Comparing the abnormal
vectors to the normal vectors, we see that the ratio be-
tween number of ABORTING to COMMITTING increases
from about 1:2000 to about 1:2, indicating that a dispro-
portionate number of ABORTING transactions are related
to the poor client latency.

Generally, the abnormal state ratio may be the cause,
symptom, or consequence of the performance degrada-
tion. In the Darkstar case, the ratio reflects the cause of
the problem: when the system performance gets worse,
Darkstar does not adjust transaction timeout accordingly,
causing many normal transactions to be aborted and
restarted, resulting in further load increase to the system.

Notice that a traditional grep-based method does not
help in this case for two reasons: 1) As a normal
user of Darkstar—without having knowledge about its
internals—the transaction states are obscure implemen-
tation details. Thus, it is difficult for a user to choose
the correct ones from many variables to search for. In

(a) Client latency

i~ Disturbance starts
o /\Mi“ Disturbance ends

|
2500

1500 2000
(b) Status ratio vector detection —Residual
' ' Threshold
H H o Alarms
ﬁ_ [R A: [|
1500 2000 2500
(c) Message count vector detection —Residual
H Threshold
o Alarms
4 |
2000 2500

Time since start (sec)

Figure 7: Darkstar detection results. (a) shows that the disturbance injection caused a huge increase in client response time. (b)
shows PCA anomaly detection results on the state ratio vector created from message variable state. The dashed line shows the
threshold Q). The solid line with spikes is the SPE calculated according to Eq. (1). The circles denote the anomalous vectors
detected by our method, whose SPE values exceed threshold Q). (c) shows detection results with the message count vector. The
SPE value of each vector (the solid line) is plotted at the time when the last message of the group occurs.

contrast, we systematically discover and analyze all state
variables. 2) ABORTING happens even during normal op-
eration times, due to the optimistic concurrency model
used in Darkstar, where aborting is used to handle access
conflicts. It is not a single ABORTING message, but the
ratio of ABORTING to other values of the state variable
that captures the problem.

Detection by message count vectors. From Darkstar
logs, Algorithm 1 automatically chooses two identifier
variables, the transaction id and the asynchronous chan-
nel id. Figure 7(c) shows detection results on the mes-
sage count vector constructed from the transaction id
variable. There are 68,029 transaction ids reported in 18
different message types. Thus, the dimension of matrix
Y™ is 68,029 x 18. By construction, each message count
vector represents a set of operations (message types) oc-
curring when executing a transaction. PCA identifies the
normal vectors corresponding to a common set of opera-
tions (simplified for presentation): {create, join txn,
commit, prepareAndCommit }. Abnormal transactions
can deviate from this set by missing a few message types,
or having rare message types such as abort txn instead
of commit and join txn. We detected 504 of these
as abnormal. To validate our result, we augmented each
feature vector using the timestamp of the last message in
that group, and we found that almost all abnormal trans-
actions occur when the disturbance is injected.

There were no anomalies on the channel id variable
during the entire experiment, suggesting that the channel
id variable is not related to this performance anomaly.

This result is consistent with the state ratio vector de-
tection result. In console logs, it is common that there
are several different pieces of information that describe
the same system behavior. This commonality suggests an
important direction for future research: to exploit multi-
source learning algorithms, which combine multiple de-
tection results to further improve accuracy.

13

6.3 Hadoop experiment results

Compared to Darkstar, HDFS is larger scale and the logic
is much more complex. In this experiment, we show that
we can automatically discover many abnormal behaviors
in HDFS. We generated the HDFS logs by setting up a
Hadoop cluster on 203 EC2 nodes and running sample
Hadoop map-reduce jobs for 48 hours, generating and
processing over 200 TB of random data. We collected
over 24 million lines of logs from HDFS.

Detection on message count vector. From HDFS logs,
Algorithm 1 automatically chooses one identifier vari-
able, the blockid, which is reported in 11,197,954
messages (about 50% of all messages) in 29 message
types. Also, there are 575,139 distinct blockids re-
ported in the log, so the message count matrix Y has
a dimension of 575,139 x 29. The PCA detector gives
very good separation between normal and abnormal row
vectors in the matrix: Using a automatically determined
threshold (@, in Eq. (1) in Section 5), it can success-
fully detect abnormal vectors corresponding to blocks
that went through abnormal execution paths.

To further validate our results, we manually labeled
each distinct message vector, not only marking them as
normal or abnormal, but also determining the type of
problems for each vector. The labeling was done by care-
fully studying HDFS code and by consulting with local
Hadoop experts. We show in the next section that the de-
cision tree visualization helps both ourselves and Hadoop
developers to understand our results. We emphasize that
this labeling step is done only to validate our method—it
is not a required step when using our technique. Label-
ing half a million vectors is possible because many of the
vectors are exactly the same. In fact, there are only 680
distinct vectors, confirming our intuition that most blocks
go through a common execution path.

Table 7 shows the manual labels and detection results.

We see that the PCA detector can detect a large fraction
of anomalies in the data, and significant improvement can
be achieved when we preprocess data with TF-IDF , con-
firming our expectations from Section 5.

Throughout the experiment, we experienced no catas-
trophic failures; thus, most problems listed in Table 7
only affect performance.

The first anomaly in Table 7 uncovered a bug that has
been hidden in HDFS for a long time. In a certain (rel-
atively rare) code path, when a block is deleted (due to
temporary over-replication), the record on the namenode
is not updated until the next write to the block, caus-
ing the file system to believe in a replica that no longer
exists, which causes subsequent block deletion to fail.
Hadoop developers have recently confirmed this bug.
This anomaly is hard to find because there is no single
error message indicating the problem. However, we dis-
cover it because we analyze abnormal execution paths.

We also notice that we do not have the problem that
causes confusion in traditional grep based log analysis.
In HDFS datanode logs, we see many messages like
#:Got Exception while serving # to #:#. Ac-
cording to Apache issue tracking (jira) HADOOP-3678,
this is a normal behavior of HDFS: the HDFS data node
generates the exception when a HDFS client does not fin-
ish reading an entire block before it stops. These excep-
tion messages have confused many users, as indicated by
multiple discussion threads on the Hadoop user mailing
list. While traditional keyword matching (e.g., searching
for words like Exception or Error) would have flagged
these as errors, our message count method successfully
avoids this false positive because this happens too many
times to be abnormal.

Our algorithm does report some false positives, which
are inevitable in any unsupervised learning algorithm.
For example, the second false positive in Table 7 occurs
because a few blocks are replicated 10 times instead of 3
times for the majority of blocks. These message groups
look suspicious, but Hadoop experts told us that these
are normal situations when the map-reduce system is dis-
tributing job configuration files to all the nodes. It is in-
deed a rare situation compared to the data accesses, but
is normal by the system design. Eliminating this type of
“rare but normal” false positive requires domain expert
knowledge. As a future direction, we are investigating
semi-supervised learning techniques that can take opera-
tor feedback and further improve our results.

Detection on state ratio vectors. The only state variable
chosen in HDFS logs by our feature generation algorithm
is the node name. Node name might not sound like a
state variable, but as the set of nodes (203 total) are rela-
tively fixed in HDFS, and their names meet the criterion
of state variable described in Section 4.1. Thus, the state
ratio vector feature reduces to per node activity count, a

14

| Anomaly Description Actual Raw | TF-IDF
1 | Namenode not updated after 4297 475 4297
deleting block
2 | Write exception client give up 3225 3225 3225
3 | Write failed at beginning 2950 2950 2950
4 | Replica immediately deleted 2809 2803 2788
5 | Received block that does not 1240 20 1228
belong to any file
6 | Redundant addStoredBlock 953 33 953
7 | Delete a block that no longer 724 18 650
exists on data node
8 | Empty packet for block 476 476 476
9 | Receive block exception 89 89 89
10| Replication Monitor timedout 45 37 45
11| Other anomalies 108 91 107
Total 16916 | 10217 16808
| False Positive Description Raw | TF-IDF
1 | Normal background migration 1399 1397
2 | Multiple replica (for task / job desc files) 372 349
3 | Unknown Reason 26 0
Total 1797 1746

Table 7: Detected anomalies and false positives using PCA on
Hadoop message count vector feature. Actual is the number of
anomalies labeled manually. Raw is PCA detection result on
raw data, TF-IDF is detection result on data preprocessed with
TF-IDF and normalized by vector length (Section 5).

feature well-studied in existing work [11, 16]. As in this
previous work, we are able to detect transient workload
imbalance, as well as node reboot events. We show the
detection results in Figure 8. In HDFS log, the number
of appearance of a node name is (roughly) equivalent to
some activity happened on that node. In normal situa-
tions, most nodes have about the same workload, mak-
ing values of all dimensions of state ratio vector about
the same. However, when a node gets slow or not re-
sponding, that dimension of the vector gets significantly
smaller (comparing to other dimensions). PCA is able
to detect this change. Notice that the average value of
all dimensions is not significant, as it simply indicate the
workload of the entire system (which is the normal pat-
tern that PCA separates out).

This result is less significant to the operators compar-
ing to our other results, as it can also be detected easily
with alternative methods, such as counting log lines, or
explicitly monitoring the incoming requests. However,
our approach is less ad-hoc because the state ratio fea-
ture is chosen automatically based on information in the
console logs, instead of manually specified.

6.4 Visualizing detection results with decision trees

From the point of view of a operator, the transformation
underlying PCA is a black box algorithm: it provides no
intuitive explanation of the detection results and cannot
be interrogated. Human operators need to manually ex-
amine anomalies to understand the root cause, and PCA
itself provides little help in this regard. In this section,
we show how to augment PCA-based detection with de-

15000

—Residual
Threshold
o Alarms

10000

Residual

5000

N

200 300
Time Window

100 400

Figure 8: Detection using HDFS state ratio vectors (built from
node names). The x-axis is time window (each time window is
150 seconds—enough time to have enough data points per win-
dow). Y-axis is the SPE value calculated according to Eq. (1)
in Section 5. During a period when workload is unbalanced,
the SPE is significantly larger. Comparing the normal vectors
with abnormal vectors, we can easily find out which node has
significantly more/less workload.

cision trees to make the results more easily understand-
able and actionable by operators. The decision tree re-
sult resembles the (manually written) rules used in many
system-event-processing programs [9], so it is easier for
non-machine learning experts. This technique is espe-
cially useful for features with many dimensions, such as
the message count vector feature in HDFS.

Decision trees have been widely used for classifi-
cation. Because decision tree construction works in
the original coordinates of the input data, its classifica-
tion decisions tend to be easy to visualize and under-
stand [32]. Constructing a decision tree requires a train-
ing set with class labels. We use the automatically gen-
erated PCA detection results (normal vs. abnormal) as
class labels, in contrast to the normal use of decision
trees. Our decision tree is constructed to explain the un-
derlying logic of the detection algorithm, rather than the
nature of the dataset.

Figure 9 is the decision tree generated using Rapid-
Miner [19] from the anomaly detection results of the
HDFS log. It clearly shows the most important mes-
sage types. For example, the first level shows that if
blockMap (the data structure that keeps block locations)
is updated more than 3 times, it is abnormal. This indi-
cates the over-replication problem (Anomaly 4 or False
Positive 1 in Table 7). The second level shows that if a
block is received 2 times or less, it is abnormal; this indi-
cates under-replication or write block failure (Anomaly
2 and 3 in Table 7). Level 3 of the decision tree is related
to the bug we discussed in Section 6.3.

In summary, the visualization of results with decision
trees helps operators and developers notice types of ab-
normal behaviors instead of individual abnormal events,
which can greatly improve the efficiency of finding root

15

blockMap updated: # is added to # size #

<=3
Received block # of size # from #
/>=3
Unexpected error trying to delete block # ...
0o
Redundant addStoredBlock request received...
0
Receiving empty packet for block #

Vo

starting thread to transfer block # to
0

... But it does not belong to any file ...

0

Adding an already existing block #

Figure 9: The decision tree visualization. Each node is the
message type string (# is the place holder for variables). The
number on the edge is the threshold of message count, gener-
ated by the decision tree algorithm. Small boxes contain the
labels from PCA, with a red 1 for abnormal and a green O for
normal.

v
ii {1 {1 {1 | i1 " i
[= = = B

causes and preventing future alarms.
7 Discussion

Should we completely replace console logs with struc-
tured tracing? There are various such efforts [7, 27].
Progress has been slow, however, mainly because there
is no standard for structured tracing embraced by all
open source developers. It is also technically difficult to
design a global “schema” to accommodate all informa-
tion contained in console logs in a structured format’.
Even if such a standard existed, manually porting all
legacy codes to the schema would be expensive. Auto-
matic porting of legacy logging code to structured log-
ging would be no simpler than our log parsing. Our
feature creation and anomaly detection algorithm can be
used withoutlog parsing in systems with structured traces
only, and we described a successful example in Sec-
tion 2.2

Improving console logs. We have discovered some bad
logging practices that significantly reduced the useful-
ness of the console log. Some of them are easy to fix. For
example, Facebook’s Cassandra storage system traces all
operations of nodes sending messages to each other, but
it does not write the sequence number or ID of messages
logged. This renders the log almost useless if multiple
threads on a single machine are sending messages con-
currently. However, just by adding the message 1D, our
message count method readily applies and would help
detect node communication problems.

Another bad logging practice, which has been discov-
ered in prior work, is the poor estimate of event severity.
Many “FATAL” or “ERROR” events are not as bad as the

Ssyslog is not structured because it use the free text field heavily.

developer thinks [13, 20]. This mistake is because each
developer judges the severity only in the context of his
own module instead of in the context of the entire system.
As we show in the Hadoop read exception example, our
tool, based on the frequency of the events, can provide
developers with insight into the real severity of individ-
ual events and thus improve quality of future logging.

Challenges in log parsing. Since we rely on static
source code analysis to extract structure from the logs,
our method may fail in some cases and fall back on iden-
tifying a large chunk of a log message as an unparsed
string. For example, if programmers use very general
types such as Object in Java (very rare in practice), our
type resolution step fails because there are too many pos-
sibilities. We guard against this by limiting the number
of descendants of a class to 100, which is large enough to
accommodate all logs we studied but small enough to fil-
ter out genuine JDK, AWT and Swing classes with many
subclasses (such as Object). Features such as generics
and mix-ins in modern OO languages provide the mecha-
nisms usually needed to avoid having to declare an object
in a very general class. In addition, some log messages
are undecorated, emitting only a variable of some prim-
itive type without any constant label. These messages
are usually leftovers from the debugging phase, and we
simply ignore these messages.

8 Related Work

Most existing work treats the entire log as a single se-
quence of repeating message types and mines it with time
series analysis methods. Hellerstein et al. developed a
novel method to mine important patterns such as message
burst, periodicity and dependencies from SNMP data in
an enterprise network [11, 17]. Yamanishi et al. mod-
eled syslog sequences as a mixture of Hidden Markov
Models (HMM), in order to find messages that are likely
to be related to critical failures [33]. Lim et al. analyzed
a large-scale enterprise telephony system log with mul-
tiple heuristic filters to find messages related to actual
failures [16]. Treating a log as a single time series, how-
ever, does not perform well in large-scale clusters with
multiple independent processes that generate interleaved
logs. The model becomes overly complex and parame-
ters are hard to tune with interleaved logs [33]. Our anal-
ysis is based on message groups rather than a time series
of individual messages. The grouping approach makes
it possible to obtain useful results with simple, efficient
algorithms such as PCA.

A crucial but questionable assumption in previous
work is that message types can be detected accurately.
Some projects [11, 17] use manual type labels from
SNMP data, which are not generally available in console
logs. Many other projects use simple heuristics—such
as removing all numeric values and strings that resemble

16

IP addresses—to detect message types [16, 33]. These
heuristics are not sufficiently general. If the heuris-
tics fail to capture some relevant variables, the result-
ing message types can be in the tens of thousands [16].
SLCT [30], Loghound [31], and Sisyphus [25] use more
advanced clustering and association rule methods to ex-
tract message types. Our experiments show that they
could not recover rare message types or state variables
from the logs.

Software development involves other textual informa-
tion than console logs. By making use of source code,
Tan et al. proposed a novel approach to detect incon-
sistencies between textual comments and the program
logic [29]. Our idea is similar in that we can make
textual information designed for human also machine-
understandable by using highly structured source code.
However, there are unique challenges in console log anal-
ysis, because we must analyze runtime information in ad-
dition to source code.

Our message count vector feature is similar to
execution-path based problem detection [3, 7]. Sec-
tion 4.2 compared these approaches to our approach.

9 Conclusions and Future Work

We propose a general approach to problem detection via
the analysis of console logs, the built-in monitoring in-
formation in most software systems. Using source code
as a reference to understand the structure of console logs,
we are able to parse logs accurately. The accuracy in log
parsing allows us to extract the identifiers and state vari-
ables, which are widely found in logs yet are usually ig-
nored due to difficulties in log parsing. Using console
logs, we are able to construct powerful features that were
previously exploited only in structured traces. These fea-
tures reveal accurate information on system execution;
thus, efficient algorithms such as PCA yield promising
anomaly detection results. In addition, we summarize
detection results with decision tree visualization, which
helps operators/integrators/developers to quickly under-
stand the detection result.

Our work has opened up many new opportunities for
turning built-in console logs into a powerful monitoring
system for problem detection, and suggests a variety of
future directions that can be explored, including: 1) ex-
tracting log templates from program binaries instead of
source code, which not only makes our approach work
on non-open-source modules but also brings much oper-
ational convenience; 2) designing other features to fully
utilize the rich information in console logs; 3) develop-
ing online detection algorithms instead of current post-
mortem analysis; and 4) investigating methods to cor-
relate logs from multiple related applications and detect
more complex failure cases.

Acknowledgements

The authors would like to thank Bill Bolosky, Richard
Draves, Jon Stearley, Byung-Gon Chun, Jaideep Chan-
drashekar, Petros Maniatis, Peter Vosshall, Deborah
Weisser, Kimberly Keeton and Kristal Sauer for their
great suggestions on the early draft of the paper.

This research is supported in part by gifts from Sun
Microsystems, Google, Microsoft, Amazon Web Ser-
vices, Cisco Systems, Facebook, Hewlett-Packard, Net-
work Appliance, and VMWare, and by matching funds
from the University of California Industry/University
Cooperative Research Program (UC Discovery) grant
COMO07-10240.

References

[1] A. W. Appel. Modern Compiler Implementation in Java.
Cambridge University Press, second edition, 2002.

D. Borthakur. The hadoop distributed file system: Archi-
tecture and design. Hadoop Project Website, 2007.

M. Y. Chen and et al. Path-based failure and evolution
management. In Proc. NSDI'04, pages 23-23, San Fran-
cisco, California, 2004. USENIX.

M. H. DeGroot and M. J. Schervish. Probability and
Statistics. Addison-Wesley, 3rd edition, 2002.

R. Dunia and S. J. Qin. Multi-dimensional fault diagnosis
using a subspace approach. In Proc. ACC, 1997.

R. Feldman and J. Sanger. The Text Mining Handbook:
Advanced Approaches in Analyzing Unstructured Data.
Cambridge Univ. Press, 12 2006.

R. Fonseca and et al. Xtrace: A pervasive network tracing
framework. In In Proc. NSDI, 2007.

C. Gulcu. Short introduction to log4j, March 2002.
http://logging.apache.org/log4;.

(2]

(3]

(4]
(5]

(6]

(7]
(8]
(9]

S. E. Hansen and E. T. Atkins. Automated system mon-
itoring and notification with Swatch. In Proc. USENIX

LISA °93, pages 145-152, 1993.

E. Hatcher and O. Gospodnetic. Lucene in Action. Man-
ning Publications Co., Greenwich, CT, 2004.

J. Hellerstein, S. Ma, and C. Perng. Discovering action-
able patterns in event data. IBM Sys. Jour, 41(3), 2002.

J. E. Jackson and G. S. Mudholkar. Control procedures
for residuals associated with principal component analy-
sis. Technometrics, 21(3):341-349, 1979.

W. Jiang and et al. Understanding customer problem trou-
bleshooting from storage system logs. In Proceedings of
USENIX FAST’09, 20009.

L. Jolliffe. Principal Component Analysis. Springer, 2002.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing
network-wide traffic anomalies. In Proc. ACM SIG-
COMM, 2004.

C. Lim, N. Singh, and S. Yajnik. A log mining approach
to failure analysis of enterprise telephony systems. In
Proc. DSN, June 2008.

S. Ma and J. L. Hellerstein. Mining partially periodic
event patterns with unknown periods. In Proc. IEEE
ICDE, Washington, DC, 2001.

C. Manning, P. Ragahavan, and et al. Introduction to In-
formation Retrieval. Cambridge University Press, 2008.

I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and
T. Euler. Yale: Rapid prototyping for complex data min-
ing tasks. In Proc. ACM KDD, New York, NY, 2006.

(10]
(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

17

[20]

(21]

(22]

(23]

[24]

[25]

[26]
(27]
(28]

[29]

[30]

[31]

(32]

[33]

A. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In Proc. IEEE DSN, Washing-
ton, DC, 2007.

K. Papineni. Why inverse document frequency? In Proc.
NAACL ’01:, pages 1-8, Morristown, NJ, 2001. Asso. for
Comp. Linguistics.

J. E. Prewett. Analyzing cluster log files using logsurfer.
In Proc. Annual Conf. on Linux Clusters, 2003.

T. Sager, A. Bernstein, M. Pinzger, and C. Kiefer. De-
tecting similar java classes using tree algorithms. In Proc.
ACM MSR 06, pages 65-71, 2006.

G. Salton and C. Buckley. Term weighting approaches in
automatic text retrieval. Technical report, Cornell, Ithaca,
NY, USA, 1987.

J. Stearley. Towards informatic analysis of syslogs. In
Proc. IEEE CLUSTER, Washington, DC, 2004.

Sun. Project darkstar. www.projectdarkstar.com, 2008.
Sun. Solaris Dynamic Tracing Guide, 2008.

J. Tan and et al. SALSA: Analyzing logs as StAte ma-
chines. In Proc. of WASL 08, 2008.

L. Tan, D. Yuan, G. Krishna, and Y. Zhou. /*icomment:
bugs or bad comments?*/. In Proc. ACM SOSP ’07, New
York, NY, 2007. ACM.

R. Vaarandi. A data clustering algorithm for mining pat-
terns from event logs. Proc. IPOM, 2003.

R. Vaarandi. A breadth-first algorithm for mining fre-
quent patterns from event logs. In INTELLCOMM, vol-
ume 3283, pages 293-308. Springer, 2004.

I. H. Witten and E. Frank. Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann, 2000.

K. Yamanishi and Y. Maruyama. Dynamic syslog mining
for network failure monitoring. In Proc. ACM KDD, New
York, NY, 2005.

