Runtime Security Monitoring with eBPF

Guillaume Fournier, Sylvain Afchain and Sylvain Baubeau
gui774ume.fournier@gmail.com
sylvain.afchain@datadoghq.com
sylvain.baubeau@datadoghq.com

Datadog

Abstract. From containerized workloads to microservices architecture,
developers are rapidly adopting new technologies that allow organizations
to scale at unprecedented rates. Unfortunately, fast mutating architectures
are hard to keep track of, and runtime security monitoring tools are now
required to collect application level and container level context in order
to provide actionable alerts. This paper intends to explain how eBPF !
has made it possible to create a new generation of runtime security tools
with significantly better performance, context and overall signal to noise
ratio compared to legacy tools like AuditD.

1 Introduction

According to the Cloud Native Computing Foundation, container
usage in production has increased by 300% between 2016 and 2020 [2].
In other words, organizations are progressively moving away from static
and dedicated infrastructures, and shifting towards micro-services and
containerized workloads. Container orchestration tools like Kubernetes
are playing a key role in this trend, and security teams need to adapt
their threat models and runtime detection capabilities to account for an
infrastructure that is constantly changing.

One of the goals of a container orchestration tool like Kubernetes
is to improve the usage of the resources available to a cluster. More
specifically, this means making sure that CPUs, memory and network
bandwidth are better utilized and distributed among the services running
on a cluster [1]. In order to achieve this goal, Kubernetes is able to mutate
the infrastructure continuously so that workloads are better distributed
among the hosts of the cluster, thus making sure that one machine is
not saturated when another one can help share the load. From a security
standpoint, this means that multiple services can now run side by side

1. The Extended Berkeley Packet Filter is a tracing technology in the Linux kernel.
See section 3 for an in-depth presentation.

2 Runtime Security Monitoring with eBPF

at any point in time,? sharing the same kernel, and increasing the blast
radius in case of a compromise. Not only does it blow up the impact of
an intrusion, this also makes the life of the incident response team much
harder, especially if the runtime monitoring tool that detected the attack
did not provide accurate and real time information about the containers
and the applications that were breached.

This paper proposes to explore eBPF to implement a new generation
of runtime security tools, showing how this new technology can be used
to retrieve complex container and application level context. Although
containers are a particularly interesting use case for the solution we
implemented, we will also demonstrate how eBPF drastically improves the
legacy runtime security tools that are used in production environments
today, by reducing the performance impact on the host, improving the
signal to noise ratio, and helping incident response team focus on what
matters.

2 Runtime security: state of the art

Before we get into the details of the solution we came up with, we are
going to better explain what we are trying to achieve and the limitations
of the existing runtime security tools that we are trying to address.

2.1 What is runtime security and why is it so important ?

Runtime security is the ability to detect Indicators of Compromise
(IOC) at runtime, in an attempt to alert your incident response team as
soon as possible, and deploy countermeasures. In more concrete terms,
this vague statement translates into multiple layers of security that can be
combined to reduce the probability of an attack slipping through your fin-
gers, regardless of all the security measures taken during the development
phase of your application, or the configuration of your infrastructure. For
example, at the infrastructure layer, Network Intrusion Detection Systems
(NIDS) are often positioned at critical places in an infrastructure, to
detect abnormal network activity, or known malicious network signatures.
At the host level, Host Intrusion Detection Systems (HIDS) are usually
deployed to detect abnormal process behaviors, or suspicious resource

2. Kubernetes can be configured to dedicate some hosts to specific workloads, but this
requires a custom setup that often voids the entire point of a Kubernetes environment.
In this document, we expect Kubernetes to follow its default configuration, which is to
allow any workload to be scheduled on any host of a cluster.

G. Fournier, S. Afchain, S. Baubeau 3

usage. An HIDS with prevention capabilities would be classified as an
Host Intrusion Prevention System (HIPS). Add a backend to gather alerts
and match the collected events against a threat intelligence database, and
the HIDS is now part of an Endpoint Detection and Response (EDR)
platform. Then if you go one layer deeper, at the application level, Web
Application Firewalls (WAF) are often deployed as a middleware before
your web applications, in an attempt to detect and block abnormal re-
quests before they reach a service. And if you finally reach the code level
instrumentation, you’ll find Runtime Application Self-Protection (RASP)
tools. The main difference between a WAF and a RASP is the ability of the
instrumentation to understand how the application will react to a specific
attack signature. For example, while a WAF would block an SQL injection
attempt unconditionally, a RASP would be able to detect if the injected
query will be properly escaped or executed. Our approach sits right in
the middle of an HIPS and an EDR. Our hypothesis is that analyzing
system level events has the best chance of catching malicious behaviors
without requiring special application level instrumentation (and therefore
becoming a burden to developers), or conceding coverage and detection
capabilities to performance concerns and mutating infrastructures.

10Cs come in multiple shapes and sizes. Since this paper is about Host
Intrusion Detection Systems, we are going to give examples of host based
indicators only. For example, a host based IOC can be as simple as: "a
process, that is not your web server, read a sensitive file that contains
credentials to your SQL database", or "an interactive shell was spawned by
a web server". A more complex example could include containers: "a docker
client was started from within a container". IOCs can also be dedicated to
specific vulnerabilities, thus helping to detect the exploitation of known
vulnerabilities in an infrastructure. When it comes to runtime security, the
limitations with IOCs usually come from the HIDS: is it versatile enough
to collect the right data for the IOC to be detected ? Most importantly,
I0Cs, by themselves, will tell you that a vulnerability might have been
exploited, but what really matters to an incident response team, is the
context provided by the HIDS to understand what happened, how critical
the situation is and what needs to be patched. In other words, you may
have the best IOCs, and the best incident response team, if your HIDS
does not follow suit and is limited in either the context it provides or its
detection capabilities, the impact of the runtime security team will be
severely limited.

Apart from the application of good security practices like defense
in depth, runtime security is also made necessary by the increasingly

4 Runtime Security Monitoring with eBPF

problematic struggles of application security. In a few words, application
security includes all the steps taken by a security team to ensure that
the services developed by an engineering team are not inherently flawed.
From code security reviews and developers security training, to third party
dependency scanning, many layers can be introduced and automated to
catch vulnerabilities before they make their way into production. Although
application security is an absolutely crucial part of the security of an
organization, it is, more realistically speaking, an attempt at reducing the
frequency and the blast radius of security incidents, rather than a bullet
proof strategy. The truth is, application security is an almost impossible
task:

— Security teams will never have enough context and visibility into
the pieces of software under active development to properly review
and validate all implementation designs.

— Third party dependency scanners are by definition telling you about
vulnerabilities that are already publicly known and potentially
under active exploitation.

— Zero days are a thing.

— Vulnerability management is complicated, and medium vulnerabili-
ties can pile up more quickly than you think.

From an application security analyst perspective, another very frustrat-
ing fact is to discover a vulnerability in production and painfully realize
that it will take weeks if not months to patch it. Many things can get in the
way. Taking an entire product offline to patch a vulnerability isn’t always
an option. Developers are under constant pressure to produce new features.
All hands on deck situations need to be carefully weighed. And even when
developers are actively working on a solution, there is a coverage gap
between the moment when a vulnerability is discovered in an application
and when the security patch is actually deployed. During this coverage
gap, the application security team is effectively powerless. The rise of
containers have even accentuated the problem. Indeed, most organizations
that use containers at scale will set up container build pipelines to control
their base image instrumentations, and unify their ecosystem. Should a
vulnerability be discovered in a key component of the base image, this is
suddenly the entire infrastructure that is at risk. One could think that
such pipelines would actually be beneficial and ensure that a patch is
deployed in a timely manner, and more importantly, deployed everywhere.
Unfortunately, experience has shown that the maintainers of those base
images are comprehensively reluctant to update them, in fear of suddenly
breaking builds for the entire company. In short, application security

G. Fournier, S. Afchain, S. Baubeau 5

analysts are playing catch up at a game that is becoming increasingly
hard to win in a containerized world.

This is where runtime security comes in. The ability to understand
how your workloads behave, and to detect exploitations at runtime is the
natural continuation of application security. The tool we are presenting
here has a customizable rule engine that can, among other use cases, be
used to deploy dedicated IOC detectors, so that security teams can be
made aware of the active exploitation of a known vulnerability. More on
that in the following sections of this paper.

Another strong incentive to runtime security is compliance. Many
compliance standards like the Payment Card Industry (PCI) standard
have File Integrity Monitoring requirements (see requirement 11.5 [28]).
In a nutshell, those requirements demand that sensitive system files and
files containing credentials or any other sensitive information be actively
monitored for modification and access. These use cases are included in
runtime security and behavioral analysis.

2.2 Existing runtime security tools have problematic
limitations

Unfortunately, runtime security is far from being a solved issue. During
our research, we’ve identified a few major limitations with which most
existing solutions struggle. It is also important to note that those limita-
tions are usually inherited from the runtime monitoring technology that
powers the tool. What we call runtime monitoring technology is simply
the data source used by the HIDS. For example, go-audit [32] is powered
by the Audit Framework [23] of the Linux kernel. Similarly, the File In-
tegrity Monitoring feature of Wazuh [35] or Auditbeat [10] are powered
by Inotify [15]. Go-audit will therefore inherit the limitations of the Audit
Framework, and similarly Wazuh or Auditbeat will necessarily be limited
by the capabilities of Inotify. This is why we focused our research on the
most used runtime security monitoring technologies, instead of trying to
assess all the existing HIDS on Linux.

Out of all the runtime security technologies we’ve looked at, the most
represented ones are (not in any particular order):

— The Linux Audit Framework

— Inotify and fanotify [18]

— Netlink based process events, coupled with the proc filesystem for

context

— Periodical checks with file hashes or known signatures

— A custom kernel module

6 Runtime Security Monitoring with eBPF

— Perf events coupled with kprobes [21] or other kernel hook points

technology

— Ptrace (sometimes coupled with seccomp-bpf filters), we won’t talk

much about this one because of the obvious performance drawback
of a solution that interrupts the execution of a program at each
syscall and duplicates the amount of context switches. That said,
a few projects did try to use it.

Instead of going through them one by one, we believe that it is a lot
more valuable to discuss how their limitations affect the runtime detection
capabilities. More importantly, we want to understand the compromises a
security team would have to make in order to use an HIDS based on each
one of them.

Context The first and most important challenge is the context provided
by the runtime technology. Without context, incident response teams will
struggle to triage and take action on the alerts. The most relevant example
of this limitation is File Integrity Monitoring use cases. Runtime security
teams are very likely to want to collect accesses to sensitive credential
files like "/etc/shadow" or "/etc/passwd". The problem is that those files
can be accessed legitimately by processes like "docker", "systemd" or even
"passwd" when a new user is added to a host. If your HIDS is based on
Inotify or periodical checks, you won’t get any context on the process that
touched the file. In other words, your runtime security team will constantly
get paged, without really understanding what happened. Eventually, the
alerts will be considered as noise, and the team will have to stop looking
at them. Similarly, the detection capabilities of such an HIDS are limited:
the only IOCs that a runtime security team will be able to detect will
have to be file system related.

Process context is not the only context that runtime security mon-
itoring technologies struggle with. Container context is also a pretty
widespread issue. The main reason that explains this struggle is that
containers are a user space concept, which translates in kernel space into
namespaces and cgroups. Matching namespaces and cgroups to container
metadata needs to be at the core of the runtime security monitoring
technology for the detection to be efficient and contextualized. Simply
put, out of the entire list of runtime technologies, only 2 have the ability
to reliably support containers for both context and detection use cases:
a custom kernel module and eBPF. It is also important to note that
many workarounds have been attempted to support containers. The most
represented attempt is a fall back to the proc filesystem to retrieve the

G. Fournier, S. Afchain, S. Baubeau 7

container ID of a process by looking at its cgroup path. This solution has
been attempted by solutions based on the Audit Framework [31] or perf
(Capsule8’s sensor used to do it, but their project is no longer publicly
available). Unfortunately, this solution is a best effort workaround that
introduces many security concerns, especially reliability problems for short
lived processes. Indeed, by the time an alert is handled by the user space
part of the HIDS, the malicious process may no longer be available through
the proc filesystem.

Container context is crucial to runtime security teams for 2 main

reasons:

— In a containerized infrastructure, workloads can come and go at
any moment on a host, following the orders from the scheduler of
the containers orchestrator. This means that, although knowing
the process that triggered an alert is crucial, knowing from which
container (if any) the alert was triggered will help the security
team narrow down their research to the service(s) running in that
container. Without this knowledge, a wild witch hunt would have
to be undertaken, and precious time would be wasted.

— Container level detection capabilities. Without the ability to reliably
collect container metadata at runtime, an HIDS cannot detect IOCs
based on them. A commonly used example is the detection of the
Graboid [27] crypto jacking worm. One of its most important IOC
is the execution of the docker client within a container.

— Similarly, container escape IOCs necessarily require the knowledge
that a process was initially inside a container.

Signal to noise ratio and coverage loss Part of this point is a direct
consequence of the previous one. The less context an HIDS has access
to, the less accurate it will be. For a runtime security team, this means
having to deal with a growing number of alerts, and ultimately having
to tune down an IOC or even turning it off entirely. To go back to the
" /etc/passwd" example, you may be tempted to filter out the processes
that accessed the file without a TTY. This way, you would be notified
only when an actual person tried to access the file instead of a service in
production. Unfortunately, this introduces a dangerous blind spot that can
be easily exploited to bypass detection. In short, a solution with limited
context will produce noisy alerts and force the security team to either
ignore them or turn them off. In both cases, coverage loss is inevitable.
Apart from context, some runtime security monitoring technologies
struggle with technical limitations which ultimately lead to coverage

8 Runtime Security Monitoring with eBPF

loss. An obvious example is the use of the proc filesystem for process
context. We've already talked about it: short lived processes might already
have died by the time the user space part of the HIDS queries the proc
file system for context. Another less obvious example is related to perf
events [25]. Configured with a kprobe, the perf_event open syscall can
be used to ask the kernel to dereference a kernel structure and collect
data at precalculated offsets. For example, this can be used to collect
the path provided to the open syscall and therefore to implement a basic
File Integrity Monitoring tool. Unfortunately, this method has hidden
limitations which may lead to coverage loss. Indeed, open syscalls can
be given relative and unresolved paths. In other words, the input cannot
be reliably used as a trusted source for your detection. If you wanted to
collect the resolved path with perf, you would have to hook much deeper
in the kernel, and dereference the file system dentry [17] tree to retrieve
the resolved path one parent at a time (this method is described in more
details in the last part of the document). The bad news is that the kprobe
interface is limited in the amount of times it can dereference a structure,
which ultimately leads to a maximum resolved path depth of 9 (the
limitation is ultimately due to the fact that the kprobe interface requires
that arguments be below MAX ARGSTR LEN [22] in length). In other
words, there are hard limitations to some runtime security monitoring
technologies that may have severe consequences on the capacity of said
technology to be used in a security tool.

Note that eBPF has hard limitations as well. For example, the most
constraining one is that the total count of instructions of an eBPF program
must be below 4096. This limit was raised in newer kernel versions to 1
million (kernels 5.1+ [33]). Fortunately, so far we’ve been successful in
working around those limitations in a way that does not impact our cov-
erage capabilities or performance footprint. More on that in the following
sections.

System overhead and resources usage Another reason that may
compel a security team to tune down its detection rules is the performance
of the HIDS and its overall footprint on a host. When evaluating the
performance impact of an HIDS, there are always 2 types of overheads to
take into account. The first one is the latency introduced in the kernel
because of the runtime security monitoring technology in use. For example,
we could argue that activating AuditD has a bigger impact on the kernel
than activating inotify watches on a few well defined files, because of
the limited granularity of the AuditD rule engine. The second one is the

G. Fournier, S. Afchain, S. Baubeau 9

resources required by the user space application to handle the events
retrieved from the runtime security monitoring technology. From our
experience, the most noticeable impact on a host comes from the number
of times an event has to be sent to user space, and the amount of work that
needs to be done in user space to handle this event. In other words, the
earlier an event can be confidently dropped and ignored, the better. This is
why programmable solutions like eBPF or kernel modules are particularly
interesting. Having the ability to develop fine grained in-kernel filter to
control the amount of data sent from kernel space to user space is a game
changer.

System safety It was probably obvious from the beginning that kernel
modules would be one of the top contestants in the search for the most
powerful way to instrument the Linux kernel. However, from a runtime
security team perspective, kernel modules have one major problem: they
require a very high level of trust in their stability. Indeed, a crash of
a kernel module would immediately crash the host, thus threatens the
availability of the service that the security team is trying to protect. Not
only can this have security and compliance consequences, it will also make
it really hard for a security team to get an infrastructure team onboard
with the deployment of a solution that might crash an entire system. In
comparison, eBPF has a key feature which ensures that the program
pushed in kernel space cannot cause a kernel panic: the eBPF verifier.
We'll get into more details about it in the next section.

3 What is eBPF and what can you do with it ?

Since its first appearance in 2014 (Kernel 3.15) [3], BPF has progres-
sively become a key technology for observability in the Linux kernel [14].
Initially dedicated to network monitoring, eBPF can now be used to mon-
itor and trace any kind of kernel space activity. eBPF is still under active
development and new features are regularly announced. One particularly
interesting and recent addition to the kernel is the Kernel Runtime Security
Instrumentation (KRSI) [30] which introduces the ability to implement a
Linux Security Module (LSM) [4] with eBPF.

3.1 Overview of eBPF

This section is an overview of the Extended Berkeley Packet Filter
(eBPF) subsystem within the kernel. Its architecture is so complex that

10 Runtime Security Monitoring with eBPF

we are not going to deep dive into all its inner workings. Instead, we are
going to provide the key principles on which eBPF is built, so that the
reader understands how this technology works and how it can be used to
instrument the kernel with a security use case in mind.

The first thing you need to know is that eBPF programs run in
a virtual machine within the Linux kernel. Compilers like LLVM and
GCC provide support for BPF, allowing a C program to be compiled
into BPF instructions. Once compiled, an eBPF program is loaded in
the kernel using the bpf syscall. As mentioned in the previous section,
multiple steps were taken to ensure that eBPF programs cannot cause
a kernel panic. One of these steps is called the eBPF verifier. When
the program is loaded in the kernel, the eBPF verifier checks that the
program complies with multiple limitations imposed to eBPF. For example,
the stack of each eBPF program cannot exceed 512 kilobytes, loops are
forbidden (although they were recently added for kernels 5.44 [29]), more
precisely, the verifier checks that your program is a Directed Acyclic Graph
(DAG), the maximum number of instructions per program is limited (4096
instructions for kernels up to 5.4 and then 1 million instructions [33]), many
other restrictions apply to memory accesses. Although those limitations
might seem extremely restrictive, they are the reason why eBPF is so
popular in tracing and monitoring tools. Indeed they ensure the safety of
a program and that its overhead on the system will remain low. Once a
program is verified, the kernel uses a just-in-time (JIT) compiler for BPF
instructions to transform the BPF bytecode into machine code.

Once you’ve loaded an eBPF program, you need to tell the kernel how
and when the program should be triggered. Multiple eBPF program types
were introduced over time and each has its own use case [12]. Some are
dedicated to network use cases while others can be used to hook onto
any exported symbol of the Linux Kernel. With a security use case in
mind, it is interesting to know that some program types have enforcement
capabilities (like the ability to drop a network packet) while others are
only dedicated to tracing use cases. To give a concrete example, the kernel
Kprobe interface can be used to attach an eBPF program to specific
symbols in the kernel. This ensures that the eBPF program will be called
anytime this symbol is called (on entry or exit of the function). In more
technical terms, when an eBPF program is attached to a kernel symbol,
the kernel inserts at runtime a trampoline at the beginning or end of
the function, so that the execution jumps into the eBPF program, thus
letting it access the input parameters of the function, or its return value.
Apart from the arguments of the function call, many BPF helper functions

G. Fournier, S. Afchain, S. Baubeau 11

can be used to gather additional runtime context. This context can be
as simple as the process and thread ID that is currently executing the
function. More complex eBPF helpers can be used to retrieve the user
space stack trace of the program that triggered the execution of the kernel
function.

eBPF is also armed with multiple storage mechanisms that can be
used to communicate with a user space program. Just like eBPF programs,
eBPF maps come in many different shapes and sizes. The good news is
that the verifier does not count the memory allocated by an eBPF map
as part of the stack of an eBPF program. eBPF maps are usually used for
two things:

— Collecting kernel space data and exposing it to a user space. With
the right access, a user space program may query a map and dump
its content. Perf ring buffers can also be used to send a stream of
events to user space in a particularly efficient way.

— Pushing data from user space to kernel space. From an HIDS use
case perspective, this is how in-kernel filters can be pushed to
configure your eBPF programs and let them know what kind of
events you are interested in.

Other more complex eBPF maps have dedicated use cases. For ex-
ample, LPM__ TRIE can be used to figure out the subnet mask of an IP
address. PROG__ARRAY maps can be used to tail call your eBPF pro-
grams. In a nutshell, this features makes it possible for an eBPF program
to programmatically decide to call another eBPF program. This helps
workaround the instructions count limitation because tail calling can be
done up to 32 times.

Another interesting upcoming addition to the kernel is the ability to
sign eBPF programs [6]. This will help make sure that only verified eBPF
programs can be loaded at runtime.

Many other rules apply to eBPF, but the few principles exposed above
should be more than enough to grasp how powerful eBPF is, and how we
used it to implement our HIDS.

3.2 eBPF and security use cases

The most natural security use case of eBPF is network security moni-
toring and enforcement. This is simply because network packet filtering
was the reason why the BPF virtual machine was initially added to the ker-
nel. Many popular packet filtering tools are based on eBPF. For example,
bpfilter should eventually replace iptables in the linux kernel [5]. Complex
network security monitoring and enforcement tools were also built on

12 Runtime Security Monitoring with eBPF

eBPF. Cilium and Cloudflare are only two of the biggest examples out
there. Last year, we presented at SSTIC 2020 a much deeper analysis of
what eBPF can do for network security monitoring and enforcement [13].

In a recent addition to the kernel (kernel 5.84), Google contributed
the Kernel Runtime Security Instrumentation (KRSI) [30]. This is the first
major push towards a runtime security use case (other than network) im-
plemented for the eBPF subsystem. In a nutshell, the patchset submitted
by Google introduces a new program type that leverages Linux Security
Module (LSM) [4] hook points to implement a dynamic Mandatory Ac-
cess Control with eBPF programs. This technology will essentially bring
enforcement capabilities to any HIDS based on eBPF, thus turning them
into HIPS. Furthermore, hooking at the LSM level has many benefits such
as hook point stability insurances or the guarantee that your programs
will always be called on certain types of resource access requests. We’ll
see in the next section why an HIDS based on eBPF without KRSI is
particularly susceptible to those two kinds of bypasses. Unfortunately,
KRSI is a recent addition to the Linux kernel, which means that for now,
HIDS solutions based on eBPF will have to work without it.

3.3 What’s the catch 7

So far we’ve presented eBPF as being the safest, fastest and overall
most flexible tracing and monitoring technology. The truth is, eBPF has
its fair share of limitations which can have dangerous consequences for an
HIDS.

The first issue isn’t exactly introduced by eBPF, but rather by the
Kprobe interface of the linux kernel. This interface gives the possibility
to attach eBPF programs on arbitrary hook points in the kernel. The
choice of those hook points would be at the core of an HIDS. For example,
in order to detect file accesses or process executions, you would have to
hook on the functions that the kernel calls to either access a file system
or execute a binary file. Unfortunately, the kernel is always changing and
from one kernel version to another, those hook points may change as
well. In other words, there is no guarantee that the hook points on which
you based your detection will be available in a production environment
that runs a different kernel version or Linux distribution. Similarly, the
kernel structures of the arguments of the hooked functions passed to your
eBPF programs may change. Depending on kernel build configuration
parameters and on the kernel version, the offset of an attribute from
the base address of a structure may change. Ultimately, this means that
the kernel headers you used in your CI to build your program might be

G. Fournier, S. Afchain, S. Baubeau 13

drastically different from the kernel headers of your hosts in production.
Your eBPF programs would then retrieve invalid data, and your detection
would essentially not work. Compiling your eBPF programs at runtime
with the headers of the host might fix the issue but it may not always
be an option. A recent initiative called Compile Once - Run Everywhere
(CO-RE) [11] should solve this problem by introducing a new metadata
format [16] that can be used at load time to override the kernel offsets
of an eBPF program with the correct values. Unfortunately, this feature
is quite hard to backport to kernel versions below 5.4. In other words,
hooking right in the middle of the kernel without any symbol stability
guarantees is hard and can ultimately lead to detection bypasses if not
handled carefully.

Therefore, the usual approach taken by eBPF based HIDS, such as
Falco [34], is to hook at the syscall level. Syscalls are more stable than
deeper kernel hook points since changing them would immediately intro-
duce breaking changes in user space programs, and it hasn’t happened so
far. However there are four dangerous problems with this approach:

— The first one is that you need to be on the constant look out for new
and rarely used syscalls. Indeed, forgetting to hook on a specific
syscall may lead to entire bypasses of your HIDS. For example, in
the context of a File Integrity Monitoring use case, you would need
to hook on all the syscalls that can be used to open a file. You will
obviously include the open and openat syscalls, but those 2 syscalls
are not the only way to open a file on Linux. Two other less popular
syscalls exist: open__by_handle__at [24] and io__uring _enter [20].
Those syscalls are much harder to support mainly because the file
context is decoupled from the file access operation. This shows how
dangerous it is to hook at the syscall level and explains why the
Linux Security Module (LSM) interface exists: regardless of the
call path, each resource handled by the kernel has its own LSM
function to implement access control. In other words, hooking at
the LSM level prevents call path bypasses.

— Another issue with working at the syscall level is that syscall calling
conventions may change. This usually translates into having to
insert multiple kprobes to hook on a single syscall. From one kernel
to the next, those calling conventions might not always be there,
so you’ll need to adapt your probes accordingly and be very careful
to avoid bypasses. This issue is also why some eBPF powered tools
usually move to tracepoints [26] instead of kprobes. Tracepoints
are another interface that can be used to hook into the kernel, with

14

Runtime Security Monitoring with eBPF

the difference that they are maintained by the kernel developers
manually. Tracepoints are therefore a stable hook point ABI, but
consequently they are a lot less versatile and flexible than kprobes.
The third issue with syscalls is that they might provide in-
complete context. For example, an unresolved relative path like
"./../../shadow" may be provided to an open syscall, and your eBPF
program will have a really hard time understanding if you are ac-
tually opening "/etc/shadow" or not. Long story short, because of
various eBPF limitations, it is actually impossible to resolve such a
path to the real file, if you stay at the syscall level. This is a huge
problem because this means that you’ll have to resolve the paths in
user space, while also having to track the current working directory
of all the processes on a host, as well as soft links, hard links and
mount points. Except if you don’t care about in-kernel filtering
and overall performances, this is not the way to do it. Another
good example of the limited context that syscalls provide is the
execve syscall. Apart from the path problem that also applies to
this syscall, you might want to collect process credentials such as
its user and group. However, when the syscall is called, the eBPF
program will be triggered from the context of the parent process
(since the execve syscall has not been executed yet), and therefore,
the various eBPF helper functions will all yield context from the
parent process. Should the executable be a setuid or setgid binary,
the process context you’ll have to work with, will essentially be
incorrect. For this specific example, moving to a probe on the
return of the execve syscall, would resolve the issue.

The fourth and probably most problematic issue is that memory
pointers provided to a syscall are vulnerable to Time-Of-Check
Time-Of-Use attacks. If you read a user space memory buffer on
entry of a syscall, there is no guarantee that the kernel will read
the same data later in the call path. Indeed, a user space thread
in the same process could swap the data in the buffer (right after
the eBPF program is executed) with the real file path that the
compromised process wants to open. The same limitation applies
to syscall exit probes but in the reversed order. In other words:
don’t trust user space memory buffers, and do not collect sensitive
data from user space pointers at the syscall level.

If the previous point wasn’t a strong enough incentive to avoid
working with user space memory buffers, this final one might be: it
isn’t always possible to read user space memory buffers from eBPF.

G. Fournier, S. Afchain, S. Baubeau 15

When a memory page isn’t in RAM, the kernel would usually
trigger a major page fault so that the data is loaded from the disk.
Although eBPF programs are executed in kernel space, they are
not authorized to trigger major page faults, thus to read user space
memory pages that are not directly accessible from the RAM. In
other words, an attacker could use this knowledge to hide malicious
parameters from your eBPF programs.

So it seems that eBPF isn’t the easiest choice for a security use case:
first, it is really hard to hook deep inside the kernel because of stability
issues, second, hooking at a higher level and stable interface like syscalls
might yield incorrect data. The following section explains how we’ve solved
both problems, and more importantly, how we’ve exposed a customizable
rule engine that can be leveraged to write detection rules for complex

10Cs.

4 The Datadog Runtime Security Agent

The Datadog runtime security agent [9] is an open source HIDS powered
by eBPF, that aims at detecting host level attacks in real time such as
Remote Code Execution (RCE) attacks or credentials theft attempts. Our
goal was to provide an answer to the coverage gaps that we identified in
the first section, while working around the limitations of eBPF listed in
the second section. We built this HIDS while keeping in mind the real
world struggles that runtime security teams have to deal with on a daily
basis. In short, we believe that runtime security teams shouldn’t have to
compromise with any aspect of runtime security: actionable alerts with
container aware metadata, low performance impact and system stability,
powerful and customizable detection capabilities with a high signal to
noise ratio, etc. Everything matters to prevent intentional or unintentional
coverage loss. These are engaging promises, and there is much to cover, so
let’s get into it !

4.1 High level overview

At a high level, the runtime security agent is made of 3 different
components:
— Our eBPF programs, which we carefully placed at a variety of
places in the kernel, are responsible for capturing kernel activity.
— A user space binary called system-probe. This executable is respon-
sible for handling the eBPF programs lifecycle. In a few words, this

16 Runtime Security Monitoring with eBPF

is the binary that checks the signature of the eBPF programs, loads
them on startup and resolves the kernel hook points on which we
need to insert our probes. This binary is also the one that retrieves
the events stream generated by our eBPF programs by reading
a perf ring buffer. Once retrieved in user space, the events are
evaluated against a set of rules that were provided by the user.
— A second user space binary called security-agent. This executable
is responsible for retrieving the security alerts from system-probe
through a gRPC local endpoint, and forwarding them to Datadog
as logs (or to any other standard log processing backend).
In the rest of the document, when we refer to the "runtime security
agent", we actually talk about those 3 components working together to
implement an HIDS.

User space

~
AR O IO L O I T ~ emmmmmsma e ——-—-—-—- ~ Datadogagent \
’ system-probe security-agent

Runtime Security Module Runtime Security

DataDog/ebpf

Kernel
eBPF programs erel space

Fig. 1. Datadog Runtime Security Agent Architecture

The HIDS capabilities of the runtime security agent can be configured
through a policy file containing a list of runtime detection rules. One of
the goals of our HIDS was to expose as much context as possible in a way
that can easily be used by a security team to detect precise IOCs, and
thus write precise detection rules. This is why we introduced a custom
query language called SecL. (Security Language) which exposes various
kernel events and their context in a simple way. For example, if you wished
to trigger an alert as soon as "/etc/shadow" is opened by a process that
isn’t "systemd" or "docker", you could simply write:

open.file.path == "/etc/shadow" && process.file.path not in ["/usr/
bin/systemd", "/usr/bin/docker"]

Listing 1. File integrity monitoring rule example

G. Fournier, S. Afchain, S. Baubeau 17

In other words, SecL lets you write a boolean expression to define your
detection rule. All the process metadata we have access to is available
through the process keyword. Similarly, all the container data we collect is
available through the container keyword. Overall, the boolean expression
can be as complex as you may wish, with file patterns, lists or macros to
factorise your rules. In listing 1, the event that will be assessed by our
eBPF programs is the open event. For now, we support 12 event types,
that are primarily focussed on the file system (such as open, unlink, mkdir,
link, mount and umount, etc), process execution (such as ezxec, ptrace etc),
or credentials update (setuid, capset, chmod, etc). However we are actively
working on adding new ones in every new release of the Datadog agent.

Performance has also been one of our top priorities, which is why
we implemented a dedicated language with a complex mechanism that
analyzes the set of rules that you provided in your policy in order to
extract two important pieces of information:

— The first one is the list of events you care about. Your rules might
not necessarily require the kernel instrumentation we’ve imple-
mented to support the 12 event types we currently have. In other
words, in order to minimize our impact on the kernel, we make
sure to insert only the probes that we absolutely need.

— The second piece of information we extract from your rules is a
list of kernel filters that we use to reduce the amount of events
sent back to user space. In other words, we have implemented
an in-kernel pre-filtering feature that is able to understand what
you care about and what doesn’t even need to be assessed in user
space. For example, say your set of rules only cares about the
"/etc/passwd" file, there is no reason to go back to user space if we
detect an event on a file which filename is not "passwd". We called
this first filtering mechanism an approver. We also learn at runtime
what your workloads are doing, and what can be safely ignored
in kernel space based on your set of rules. For example, if all the
files that you need to watch are in the "/etc/" directory, there is
no need to go back to user space with events on files that are in
the "/tmp/" directory. We called this second filtering mechanism
discarders. To ensure we do not discard events on a file or a process
forever, discarders can be invalidated at runtime. For example,
some discarders are set with a timeout, so that they will eventually
expire. We can also decide to remove a discarder based on runtime
events such as rename or deletion events. Similarly, when a mount

18 Runtime Security Monitoring with eBPF

point is unmounted, we immediately remove the discarders that
applied to its files.

We apply the same filtering logic to the most important attributes
exposed in SecL.. This allows us to continuously adapt our in-kernel pre-
filtering capabilities to the workload, thus ensuring that our impact on the
host remains as low as possible, even if the workloads change over time.

We have also given a particular attention to making sure that the data
we collect from kernel space is fully resolved and contextualized. This
means, for example, that file names are not evaluated in kernel space at
the syscall level, but much deeper in the file system call path, so that we
work with fully resolved and absolute paths. It also means that we’ve gone
through the long and painful process of checking each kernel version and
distribution we support, to make sure that the hook points we chose are
stable.

We currently support 2 kinds of rules: file integrity monitoring rules
and Process execution monitoring rules. The Runtime Security Agent is
released with a default set of rules [8] that you can checkout to better
understand its capabilities.

4.2 File integrity monitoring (FIM)

File Integrity Monitoring is the ability to detect when a file was created,
accessed or modified, thus when its content or attributes changed. The
ability to detect file system changes is a building block of many I0OCs. For
example, some dirty cow exploit will try to open the "/etc/passwd" and
try to append a line to it.

Apart from 10Cs for specific vulnerabilities, File Integrity Monitoring
is also very important in general to detect suspicious activity on a host. For
example, an attacker trying to get persistent access to a machine is likely
to try to explore a few critical system files to gather information about
the host and change its configuration. "/etc/shadow" and "/etc/passwd"
are obvious examples of that, but many other sensitive system files should
be monitored. For example the "authorized_ keys" file of the various users
on a host, or the "/etc/resolv.conf" file can both be maliciously accessed
to alter the behavior of the host.

As explained in the previous sections, eBPF has multiple limitations
which need to be carefully dealt with to avoid bypasses. Instead of relying
on syscall parameters, we actually decided to hook much deeper in the
kernel so that we can directly access the dentry [17] tree of the file system.
In a few words, dentry structures are used by the kernel to keep track
of the tree of files in a file system. Each "dentry" structure points to an

G. Fournier, S. Afchain, S. Baubeau 19

inode [19] structure which contains the metadata and all the attributes
of a file. By hooking deep enough in the kernel, we are able to retrieve
a pointer to the dentry structure of the file that is being modified or
accessed for a given event type. Once we get this dentry structure, we
know that we have access to the resolved and absolute path of the file,
thus preventing any bypass that a syscall based approach would have.

We gave a particular attention to how we chose our kernel hook points.
Given that we target kernels 4.134 (as well as Centos 7 and 8) we made
sure that we do not have any coverage loss because of missing kernel
symbols. We even implemented a safe guard in our eBPF library [7]: once
system-probe has started, the eBPF library double checks the list of eBPF
programs that were successfully attached to ensure that we are not missing
any critical hook points.

All of this hard work eventually paid off, because this ultimately gave
us the opportunity to expose an impressive amount of file system context
on each alert. For example, regardless of the event you requested, we are
able to expose file metadata like the various modification times, the user,
group, access mode of the file and most importantly the mount point of
the file system. Since we also track mount operations at runtime, we are
able to fully resolve paths inside containers, and understand the part of
the file path that is "inside the container" and the part that was created by
your container runtime. This is a crucial part that is usually missing from
legacy runtime security tools, and that allows us to support containers
natively.

4.3 Process execution monitoring

Process execution monitoring is another building block of runtime
security. In a few words, process execution monitoring can be used to
detect processes in your production environment that you didn’t expect to
see, or detect execution patterns that should never be seen. For example,
a web server in production should never spawn a shell. Similarly, you
may want to be informed if a package manager is called to install new
dependencies on a host. Looking at the arguments of a call to "curl" can
also help you understand what kind of sensitive data an attacker might
have stolen.

Another important part of process execution monitoring is the ability
to enrich the context we provide with our alerts (regardless of their type).
This is why we’ve spent a lot of time refining a user space process cache
that we use to provide the real process tree of each process. By real
process tree, we mean the lineage of all the processes that lead to the

20 Runtime Security Monitoring with eBPF

one that triggered an alert, regardless if those parent processes are still
alive or not. This is another example of a feature that is missing from
most legacy runtime security tools: if you look at the proc file system,
you’ll soon realize that when a process dies, its children are immediately
attached to the process ID 1. This means that the kernel loses the lineage
context of a process even though it could be a crucial part of context that
would tell you which service on a host was exploited. We’ve introduced
the process.ancestors selector in our Secl: syntax, so that you can write
a condition on one of the parents of a process, regardless of the amount
of intermediary processes that might have been added to try to fool the
detection. For example, the following rule can be used to detect web shells:

exec.file.path in ["/bin/bash", "/bin/sh", ...] && process.ancestors
.file.path == "/bin/my_web_server"

Listing 2. Process execution monitoring rule example

Another exciting benefit of hooking deeper in the kernel than the
syscall level is the ability to work with pieces of information that are
usually not even exposed in user space. For example, we are able to
retrieve the layer of a file in an overlayfs filesystem. This information has
powerful security consequences since it can be used to determine if a file,
that is about to be executed, was part of the base image of a container,
or if it was modified (or simply created) compared to its original version
in the base image. Detecting such a complex use case can be written in
one simple rule:

‘exec.file.in_upper_layer == true

Listing 3. In upper layer rule example

Similarly, we are also able to collect process credentials and enrich
other events with it. This means that the full set of user IDs and group IDs,
along with kernel capabilities and executable file metadata are collected.
This lets you write interesting rules on processes with dangerously wide
access like CAP__SYS__ADMIN, or simply detect executions of binary
files with the setuid or setgid bit flags set.

5 Conclusion

Process monitoring and File integrity monitoring are two important
aspects of runtime security, but we are actively working on adding new
features to the project in order to extend our detection capabilities. Thanks

G. Fournier, S. Afchain, S. Baubeau 21

to the versatile capabilities of eBPF, the possibilities are almost limitless:
from network security monitoring to behavioral analysis, exciting projects
are ahead of us !

This paper shows how eBPF can drastically improve the detection
capabilities of a runtime security team without having to compromise
with performance or coverage. The ability to surface actionable alerts with
comprehensive context about the userspace process and container that
triggered the alert, is probably the most important feature that an HIDS
can offer in a containerized environment. During a security incident, quickly
identifying the blast radius and the vulnerable parts of the infrastructure
will help gain precious minutes and deploy countermeasures in a timely
manner.

As shown by the numerous security related initiatives that are making
their way into the code base of the eBPF subsystem, we expect to see a
growing number of tools use this technology.

References

1. John Arundel and Justin Domingus. Cloud Native DevOps with Kubernetes. March
2019.

2. Cloud Native Computing Foundation (CNCF). CNCF Survey 2020. https://www.
cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf, 2020.

3. Jonathan Corbet. BPF: the universal in-kernel virtual machine. https://lwn.net/
Articles/599755, 2014.

4. Jonathan Corbet. Writing your own security module. https://lwn.net/Articles/
674949, 2016.

5. Jonathan Corbet. BPF comes to firewalls. https://lwn.net/Articles/747551,
2018.

6. Jonathan Corbet. Toward signed BPF programs. https://lwn.net/Articles/
853489, 2019.

7. Datadog. Datadog eBPF library. https://github.com/DataDog/ebpf/blob/
€a64821c979335c97a9¢c935bafaf3981828ba0e9/manager/manager . go#L158.

8. Datadog. Datadog Runtime Security Agent default policies. https://github.com/
DataDog/security-agent-policies/blob/master/runtime/default.policy.

9. Datadog. Datadog Runtime Security Agent source code. https://github.com/
DataDog/datadog-agent.

10. Elastic. Auditbeat File Integrity Module source code. https://github.com/
elastic/beats/tree/master/auditbeat/module/file_integrity.

11. Facebook. Compile Once - Run Everywhere. https://facebookmicrosites.
github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html, 2020.

12. Lorenzo Fontana and David Calavera. Linux Observability with BPF. November
2019.

https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://www.cncf.io/wp-content/uploads/2020/11/CNCF_Survey_Report_2020.pdf
https://lwn.net/Articles/599755
https://lwn.net/Articles/599755
https://lwn.net/Articles/674949
https://lwn.net/Articles/674949
https://lwn.net/Articles/747551
https://lwn.net/Articles/853489
https://lwn.net/Articles/853489
https://github.com/DataDog/ebpf/blob/ea64821c979335c97a9c935bafaf3981828ba0e9/manager/manager.go#L158
https://github.com/DataDog/ebpf/blob/ea64821c979335c97a9c935bafaf3981828ba0e9/manager/manager.go#L158
https://github.com/DataDog/security-agent-policies/blob/master/runtime/default.policy
https://github.com/DataDog/security-agent-policies/blob/master/runtime/default.policy
https://github.com/DataDog/datadog-agent
https://github.com/DataDog/datadog-agent
https://github.com/elastic/beats/tree/master/auditbeat/module/file_integrity
https://github.com/elastic/beats/tree/master/auditbeat/module/file_integrity
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html
https://facebookmicrosites.github.io/bpf/blog/2020/02/19/bpf-portability-and-co-re.html

22

Runtime Security Monitoring with eBPF

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Guillaume Fournier. Process level network security monitoring and enforcement
with eBPF. SSTIC, 2020.

Brendan Gregg. BPF Performance Tools: Linux System and Application Observ-
ability. December 2019.

Michael Kerrisk. Filesystem Notification. https://lwn.net/Articles/604686,
2014.

Linux. BTF type format. https://www.kernel.org/doc/html/latest/bpf/btf.
html.

Linux. Dentry structure definition in the Linux kernel. https://elixir.bootlin.
com/linux/latest/ident/dentry.

Linux. Fanotify manual page. https://man7.org/linux/man-pages/man7/
fanotify.7.html.

Linux. Inode structure definition in the Linux kernel. https://elixir.bootlin.
com/linux/latest/ident/inode.

Linux. io_uring enter syscall manual page. https://manpages.debian.org/
unstable/liburing-dev/io_uring_enter.2.en.html.

Linux. Kprobe documentation. https://www.kernel.org/doc/Documentation/
kprobes.txt.

Linux. Kprobe Interface source code. https://elixir.bootlin.com/linux/v5.
11.3/source/kernel/trace/trace_probe.c#L551.

Linux. Linux Audit Documentation. https://github.com/linux-audit/audit-
documentation/wiki.

Linux. open_ by_handle_ at syscall manual page. https://man7.org/linux/man-
pages/man2/open_by_handle_at.2.html.

Linux. perf: Linux profiling with performance counters. https://perf.wiki.
kernel.org/index.php/Main_Page.

Linux. Tracepoint Documentation. https://www.kernel.org/doc/html/latest/
trace/tracepoints.html.

Palo Alto Networks. Graboid crypto jacking worm. https://unit42.
paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-
in-images-on-docker-hub.

Payment Card Industry (PCI). PCI security standards. https:
//www.pcisecuritystandards.org/documents/Prioritized-Approach-for-
PCI_DSS-v3_2.pdf, 2019.

Marta Rybczynska. Bounded loops in eBPF. https://lwn.net/Articles/794934,
2019.

KP Singh. Kernel Runtime Security Instrumentation. https://lwn.net/Articles/
798918, 2019.

Slack. go-audit procfs fallback to resolve a container ID. https://github.
com/slackhq/go-audit/blob/d3dd09bab49077bb4£6998609acbed71fb659fdd/
extras_containers_capsule8.go.

Slack. go-audit project source code. https://github.com/slackhq/go-audit,
2016.

Alexei Starovoitov. BPF: Improve verifier scalability. https://lwn.net/Articles/
784571, 2019.

https://lwn.net/Articles/604686
https://www.kernel.org/doc/html/latest/bpf/btf.html
https://www.kernel.org/doc/html/latest/bpf/btf.html
https://elixir.bootlin.com/linux/latest/ident/dentry
https://elixir.bootlin.com/linux/latest/ident/dentry
https://man7.org/linux/man-pages/man7/fanotify.7.html
https://man7.org/linux/man-pages/man7/fanotify.7.html
https://elixir.bootlin.com/linux/latest/ident/inode
https://elixir.bootlin.com/linux/latest/ident/inode
https://manpages.debian.org/unstable/liburing-dev/io_uring_enter.2.en.html
https://manpages.debian.org/unstable/liburing-dev/io_uring_enter.2.en.html
https://www.kernel.org/doc/Documentation/kprobes.txt
https://www.kernel.org/doc/Documentation/kprobes.txt
https://elixir.bootlin.com/linux/v5.11.3/source/kernel/trace/trace_probe.c#L551
https://elixir.bootlin.com/linux/v5.11.3/source/kernel/trace/trace_probe.c#L551
https://github.com/linux-audit/audit-documentation/wiki
https://github.com/linux-audit/audit-documentation/wiki
https://man7.org/linux/man-pages/man2/open_by_handle_at.2.html
https://man7.org/linux/man-pages/man2/open_by_handle_at.2.html
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://www.kernel.org/doc/html/latest/trace/tracepoints.html
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub
https://unit42.paloaltonetworks.com/graboid-first-ever-cryptojacking-worm-found-in-images-on-docker-hub
https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf
https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf
https://www.pcisecuritystandards.org/documents/Prioritized-Approach-for-PCI_DSS-v3_2.pdf
https://lwn.net/Articles/794934
https://lwn.net/Articles/798918
https://lwn.net/Articles/798918
https://github.com/slackhq/go-audit/blob/d3dd09bab49077bb4f6998609acbed71fb659fdd/extras_containers_capsule8.go
https://github.com/slackhq/go-audit/blob/d3dd09bab49077bb4f6998609acbed71fb659fdd/extras_containers_capsule8.go
https://github.com/slackhq/go-audit/blob/d3dd09bab49077bb4f6998609acbed71fb659fdd/extras_containers_capsule8.go
https://github.com/slackhq/go-audit
https://lwn.net/Articles/784571
https://lwn.net/Articles/784571

G. Fournier, S. Afchain, S. Baubeau 23

34. Sysdig. The Falco Project. https://falco.org/.
35. Wazuh. Wazuh runtime detection source code. https://github.com/wazuh/wazuh.

https://falco.org/
https://github.com/wazuh/wazuh

	Runtime Security Monitoring with eBPF

