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Abstract
The key point of anomaly detection on attributed
networks lies in the seamless integration of net-
work structure information and attribute informa-
tion. A vast majority of existing works are mainly
based on the Homophily assumption that implies
the nodal attribute similarity of connected nodes.
Nonetheless, this assumption is untenable in prac-
tice as the existence of noisy and structurally irrel-
evant attributes may adversely affect the anomaly
detection performance. Despite the fact that recent
attempts perform subspace selection to address this
issue, these algorithms treat subspace selection and
anomaly detection as two separate steps which of-
ten leads to suboptimal solutions. In this paper, we
investigate how to fuse attribute and network struc-
ture information more synergistically to avoid the
adverse effects brought by noisy and structurally ir-
relevant attributes. Methodologically, we propose a
novel joint framework to conduct attribute selection
and anomaly detection as a whole based on CUR
decomposition and residual analysis. By filtering
out noisy and irrelevant node attributes, we perfor-
m anomaly detection with the remaining represen-
tative attributes. Experimental results on both syn-
thetic and real-world datasets corroborate the effec-
tiveness of the proposed framework.

1 Introduction
Anomaly detection [Chandola et al., 2009; Aggarwal, 2015]
aims to spot rare, unexpected and suspicious instances that
significantly deviate from the patterns of majority in datasets.
It has significant implications in various high-impact domain-
s, such as financial fraud detection, intrusion detection and
event detection [Rayana and Akoglu, 2015; Eskin et al., 2002;
Chen et al., 2016]. Typically, when an instance is identified
as anomalous, we can perform further analysis to investigate
why it is abnormal and what makes it different from the oth-
er instances in order to gain more insights on the potential
risks of the system. Recently, there is a surge of anomaly
detection research focusing on attributed networks [Sánchez
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f1:	age
f2:	gender
f3:	income
f4:	number	of	friends

Figure 1: A toy example for anomaly detection on representative
attributes via attribute selection.

et al., 2013; Liu et al., 2017; Li et al., 2017] as attributed
networks are increasingly used to represent real-world infor-
mation systems such as social networks, product co-purchase
networks and protein-protein interaction networks. Networks
of this particular type use edges to describe relationships be-
tween data instances, and also collect additional attributes to
delineate the properties of nodes. Due to the unique charac-
teristics of attributed networks, anomaly detection faces new
challenges. First, how to leverage network structure informa-
tion and nodal attributes seamlessly for anomaly detection is
a crucial yet challenging problem. Secondly, the existence of
noisy and structurally irrelevant attributes can impede us to
accurately spot anomalies and may even lead to misjudges.
Hence, identifying and filtering out these attributes is imper-
ative for anomaly detection.

A vast majority of existing efforts [Davis et al., 2011;
Liu et al., 2017; Li et al., 2017] heavily rely on the assump-
tion of Homophily [McPherson et al., 2001] to detect anoma-
lies on attributed networks. The principle of Homophily im-
plies that there exists a strong correlation between network
structure and node attributes, instances connected with each
other in the network are also similar w.r.t. the nodal attributes.
Despite its empirical success, when we conduct further anal-
ysis to examine the relations between each attribute and the
network structure, we may observe that not all attributes are
strongly hinged to the network structure. In other words,
there may exist some outlying attributes that do not satisfy
the Homophily hypothesis, and the existence of these struc-
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turally irrelevant attributes could bring about adverse effects
on anomaly detection. Figure 1 illustrates an example of the
above-mentioned issues on a real-world social network. In
the figure, each node denotes a user and she/he has four at-
tributes (age, gender, income, number of friends), users are
interconnected with their acquaintances. When performing
anomaly detection with all four attributes, we are most like-
ly to regard each node as an anomaly since each node does
not conform to the patterns of the majority. Nonetheless, if
we only focus on attributes f1 and f3, it is obvious that n-
ode 5 is a community anomaly [Gao et al., 2010] as its third
attribute (f3) value is relatively higher than the other nodes
within the same community (node 1, 2, 3 and 4). Meanwhile,
node 8 is also an anomaly since its first attribute (f1) value
deviates significantly from its structurally connected nodes.
This phenomenon indicates that not all attributes show de-
pendencies with the network structure, examples include the
binary attribute f2, and the numerical attribute f4 which is
almost assigned with random values. These noisy and ir-
relevant attributes hinder us in capturing the correlation be-
tween network structure and node attributes, which may fur-
ther make the true anomalies node 5 and node 8 undiscovered.
Therefore, selecting representative attributes that are closely
hinged with the network structure is essential for anomaly
detection. Although there are a few attempts on performing
subspace selection for spotting anomalies, they treat it as a
pre-processing step before anomaly detection [Sánchez et al.,
2013; 2014] rather than optimizing them as a whole, it may
lead to a suboptimal result.

In this paper, we propose a joint modeling approach for
anomaly detection on attributed networks, called ANOMA-
LOUS. Specifically, through optimizing attribute selection
and anomaly detection as a whole, ANOMALOUS selects a
subset of representative instances on the space of representa-
tive attributes that are closely hinged with the network topol-
ogy based on CUR decomposition [Mahoney and Drineas,
2009], and then measures the normality of each instance via
residual analysis [She and Owen, 2011]. The main contribu-
tions of our work are as follows:
• Examining the issues of existing attempts on performing

anomaly detection on attributed networks.
• Introducing a new idea that optimizes attribute selection

and anomaly detection as a whole instead of treating
them as two separate steps.
• Proposing a novel joint anomaly detection framework

ANOMALOUS for attributed networks by CUR decom-
position and residual analysis.
• Evaluating the performance of the proposed framework

on synthetic datasets and real-world datasets.

2 The Proposed Methodology
The notations used in this paper are introduced as follows.
Following the standard notation, we use bold uppercase char-
acters (e.g.,A) to denote matrices and bold lowercase char-
acters (e.g.,b) to indicate vectors. Scalars are written as nor-
mal lowercase characters (e.g., c) and uppercase italic letters
(e.g., F) for sets. Given a matrix A, we use A(i, :), A(:, j)
and A(i, j) to denote its i-th row, j-th column and (i, j)-th

entry, respectively. As for the vector or matrix norms, the
only used vector norm is the `2 norm, denoted by ‖ · ‖2.
The `2,1-norm of matrix A ∈ Rd×n is written as ‖A‖2,1 =∑d

i=1

√∑n
j=1 A(i, j)2 , ‖A‖F =

√∑d
i=1

∑n
j=1 A(i, j)2

represents its Frobenius norm and its `2,0-norm means the
number of nonzero rows, denoted by ‖A‖2,0.

2.1 Problem Formulation
We first give the formal definition of anomaly detection on at-
tributed networks : suppose U = {u1, u2, . . . , un} indicates
a set of n instances, each instance is affiliated with a set of
d-dimensional attributes F = {f1, f2, . . . , fd}. We adopt a
matrix X ∈ Rd×n to represent the attribute information of
all n instances, where X(:, i) ∈ Rd denotes the attribute in-
formation of the i-th instance ui. In addition, these instances
are interconnected with each other to form a network, and
we use the adjacency matrix A ∈ Rn×n to describe the link
relationships between them, where A(i, j) = 1 indicates ui
and uj is connected with each other. The goal of anomaly
detection is to find a set of instances which are rare and dif-
fer significantly from the majority of the reference instances
using the attribute information X and the network structure
information A.

2.2 Joint Anomaly Detection Framework
Residual analysis which aims to study the residuals between
true data and estimated data can be applied to spot anomalies
since anomalies usually have large residual errors caused by
the huge deviations from majority reference instances in pat-
terns [Tong and Lin, 2011]. A well-known method of build-
ing estimated data is by using some instances to reconstruct
true data [Yu et al., 2006]. In view of the existence of noisy
and irrelevant attributes, we would like to simultaneously s-
elect structure-related attributes and representative instances
to rebuild true data X. Hence, we decide to expand our view
from standard factorizations to CUR decomposition, which
has better interpretability for instance and attribute selection.
Mathematically, the proposed framework is formulated as:

min
C,U,R,R̃

‖X−CUR− R̃‖2F + Ψ(R̃, γ, ϕ), (1)

where C ∈ Rd×m is a subset of m columns of X, R ∈ Rr×n

is a subset of r rows of X, U ∈ Rm×r with m, r and
rank(U) as small as possible, R̃ is the residual matrix of
node attributes and Ψ is a regularization term on R̃.

It can be observed from the above formulation that the pro-
cess of finding matrix C and R indicates the selection of m
instances and r attributes from the original data and attribute
space. Accordingly, CUR is a combination of the select-
ed instances and attributes which is supposed to approximate
matrix X as closely as possible, thus the selected instances
and attributes can be regarded as representative ones.

Here we give details about the regularization term Ψ as
follows:

Ψ(R̃, γ, ϕ) = γ‖R̃T ‖2,0 + ϕtr(R̃LR̃T ), (2)

where L is a Laplacian matrix generated by the adjacency
matrix A of networks. The first item ‖R̃T ‖2,0 is used to limit
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the number of anomalies since a large norm of R̃(:, i) indi-
cates the i-th instance has a higher possibility to be anoma-
lous, and the number of anomalies is much smaller than that
of normal instances. The parameter γ controls the column s-
parsity of the residual matrix R̃. At this point, we have only
dealt with attribute information with neglect of network struc-
ture. Nevertheless, network structure information provided
by attributed networks is also particularly critical for anoma-
ly detection. Theoretically, we expect attribute modeling can
filter out noisy and irrelevant attributes so that the Homophi-
ly hypothesis holds for selected attributes. Therefore, Based
on Homophily, we require that if two instances are connect-
ed in the network, their attribute patterns in the residual ma-
trix R̃ ought to be similar after attribute reconstruction. For-
mally, we achieve network structure modeling by minimizing
1
2

∑n
i=1

∑n
j=1(R̃T (i, :) − R̃T (j, :))2A(i, j) = tr(R̃LR̃T ).

In fact, ϕtr(R̃LR̃T ) is modeling the correlation between net-
work structure and node attributes, parameter ϕ controls the
contribution of the modeling of this correlation.

2.3 Model Reformulation
Due to the under-determination of a general CUR model,
we introduce two indicator vectors v = (v1, . . . ,vn)T ∈
{0, 1}n and p = (p1, . . . ,pd)T ∈ {0, 1}d to reformulate E-
q. (1) as:

min
v,p,Û,R̃

‖X−Xdiag(v)Ûdiag(p)X− R̃‖2F + Ψ(R̃, γ, ϕ)

s.t. 1T
nv = m, 1T

d p = r, (3)
where diag(v) is a diagonal matrix with diagonal elements
v and 1n is an n-dimensional vector with all elements being
1. Xdiag(v) keeps m columns of X unchanged as selected
instances and sets remaining n−m columns to zero vectors.
diag(p)X holds r rows of X unaltered as selected attributes
and sets the rest d− r rows to zero vectors.

Then we reformulate Eq. (3) by adding the regularization
term Φ:

min
W,R̃

‖X−XWX− R̃‖2F +Φ(W, α, β)+ Ψ(R̃, γ, ϕ), (4)

where W = diag(v)Ûdiag(p) ∈ Rn×d, and it enables the
task of selecting representative instances and attributes simul-
taneously through a regularization term Φ. The regularization
term Φ is defined as:

Φ(W, α, β) = α‖W‖2,0 + β‖WT ‖2,0, (5)
where α and β controls the row sparsity and the column spar-
sity of matrix W, respectively. Here we make a key observa-
tion that the above definition achieves simultaneous instance
and attribute selection. On one hand, WX in Eq. (4) can be
regarded as a coefficient matrix, and when the i-th row of
WX is not a zero vector, X(:, i) is chosen as a representa-
tive instance. Apparently, ‖W‖2,0 ensures that only a few
instances are chosen to be representative ones. On the oth-
er hand, XW can also be viewed as a coefficient matrix, and
when the j-th column of XW is not a zero vector, X(j, :) is s-
elected as a representative attribute. Obviously, ‖WT ‖2,0 en-
sures only part of attributes become representative attributes
which are leveraged to reconstruct the original data X.

Considering the `2,0-norm term in Eq. (2) and Eq. (5) will
make Eq. (4) NP-hard because of its discrete nature. To ad-
dress this issue, we relax the `2,0-norm constraint as ‖W‖2,1
which is the minimum convex hull of ‖W‖2,0, the objective
function of framework ANOMALOUS can be formulated as:

min
W,R̃
‖X−XWX− R̃‖2F + α‖W‖2,1 + β‖WT ‖2,1

+ γ‖R̃T ‖2,1 + ϕtr(R̃LR̃T ).

(6)

From a global perspective, the correlation modeling ter-
m tr(R̃LR̃T ) imposes constraint on instance and attribute
selection. We can understand it that in order to minimize
the value of tr(R̃LR̃T ), our framework tends to choose in-
stances which are similar to great majority of instances as
representative ones, and simultaneously select representative
attributes which are closely hinged with the network struc-
ture and can represent the whole dataset most precisely. By
analyzing the residual matrix R̃, we can rank anomalies ac-
cording to residual errors.

3 Optimization Algorithm
The optimal solution of Eq. (6) is difficult to obtain as the ob-
jective function is not convex in terms of both W and R̃ si-
multaneously, and it is also not smooth due to `2,1-norm term.
Hence, we present an alternating way to solve this problem.
Update R̃: When W is fixed, Eq. (6) is convex w.r.t. R̃.
Therefore, we first fix W to update R̃, then the objective
function can be reformulated as:

min
R̃
‖X−XWX− R̃‖2F +γ‖R̃T ‖2,1 +ϕtr(R̃LR̃T ). (7)

By setting the derivative of Eq. (7) w.r.t. R̃ to zero, we get

XWX + R̃−X + γR̃DR + ϕR̃L = 0, (8)

where DR is a diagonal matrix with diagonal elements
DR(i, i) = 1

2‖R̃T (i,:)‖2
1. It can be noticed that matrix ϕL,

I and γDR are both positive semidefinite, so the summation
of I+γDR+ϕL is also a positive semidefinite matrix. There-
fore, we can get a closed-form solution of R̃ as follows:

R̃ = (X−XWX)(I + γDR + ϕL)−1. (9)

Update W: When R̃ is fixed, Eq. (6) is convex w.r.t. W.
Then the objective function can be reformulated as:

min
W
‖X−XWX− R̃‖2F + α‖W‖2,1 + β‖WT ‖2,1. (10)

Similarly, by setting the derivative of Eq. (10) w.r.t. W to
zero, we arrive at

XTXWXXT + αD
′

WW + βWD
′′

W = H, (11)

1Considering ‖R̃T (i, :)‖2, ‖W(i, :)‖2 and ‖WT (i, :)‖2 could
be zero theoretically, we redefine DR(i, i) = 1

2‖R̃T (i,:)‖2+ε
,

D
′
W (i, i) = 1

2‖W(i,:)‖2+ε
and D

′′
W (i, i) = 1

2‖WT (i,:)‖2+ε
in prac-

tical programming, where ε is a very small constant.
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where H = XTXXT −XT R̃XT . D
′

W and D
′′

W are diag-
onal matrices with the i-th diagonal element as D

′

W (i, i) =
1

2‖W(i,:)‖2 and D
′′

W (i, i) = 1
2‖WT (i,:)‖2 , respectively.

Then W in Eq. (11) can be solved easily according to the
following lemmas and theorem:

Lemma 1. For any matrix B ∈ Rm×n right multiplied by
a diagonal matrix D ∈ Rn×n, the expression BD can be
rewritten as D∗�B, where� denotes the Hadamard product
(component-wise multiplication) and D∗ ∈ Rm×n is defined
as D∗(i, j) = D(j, j), ∀i = 1, 2, . . . ,m, ∀j = 1, 2, . . . , n.

Lemma 2. For the following matrix equation on U:

C1UC2 + aD1U + bD2 �U = V, (12)

where C1 and C2 are symmetric and positive semidefinite
matrices, D1 and D2 are diagonal matrices, a and b are s-
calers,� denotes the Hadamard product. We can reformulate
Eq. (12) as follows:

Θ1KΘ2 + aPTD1PK + bD2 �K = PTVQ, (13)

where we decompose C1 and C2 by non-negative eigenvalues
such that C1 = PΘ1P

T , C2 = QΘ2Q
T , P and Q are both

orthogonal matrices, Θ1 and Θ2 are two diagonal matrices
composed of the eigenvalues. In addition, K = PTUQ.

Theorem 1. The closed-form solution of W in optimization
problem Eq. (10) is

W = PYQT . (14)

Proof. Based on Lemma 1 and Lemma 2, Eq. (11) becomes

Θ1YΘ2 + αZY + βD∗W �Y = M, (15)

where XTX = PΘ1P
T , XXT = QΘ2Q

T , Y = PTWQ,
Z = PTD

′

WP and M = PTHQ. For a better represen-
tation, we denote Y = [y1,y2, . . . ,yd] ∈ Rn×d, M =
[m1,m2, . . . ,md] ∈ Rn×d, Z = [z1; z2; . . . ; zn] ∈ Rn×n,
then the first three terms of Eq. (15) can be rewritten as

Θ1YΘ2 = [Θ2(1, 1)Θ1y1,Θ2(2, 2)Θ1y2, . . . ,Θ2(d, d)Θ1yd],

αZY = α


z1y1 z1y2 · · · z1yd

z2y1 z2y2 · · · z2yd

...
...

. . .
...

zny1 zny2 · · · znyd

 , and

βD∗W �Y = β[D∗W (1, 1)Iy1,D
∗
W (1, 2)Iy2, . . . ,D

∗
W (1, d)Iyd].

Plugging the equations above into Eq. (15), we find that E-
q. (15) can be decomposed into d equations with respect to d
column vectors of matrix Y, i.e.,

Θ2(i, i)Θ1yi + αZyi + βD∗W (1, i)Iyi = mi, (16)

for i = 1, 2, · · · , d. As a result, we have

yi = (Θ2(i, i)Θ1 + αZ + βD∗W (1, i)I)−1mi. (17)

Integrating each yi obtained by Eq. (17), we achieve the
closed-form solution of Y. Recall Y = PTWQ, it is ac-
cessible to W through basic matrix operations.

Algorithm 1 ANOMALOUS: A joint modeling approach for
anomaly detection on attributed networks

Input: Adjacency matrix A, attribute matrix X, parameters
α, β, γ, ϕ.

Output: Top t instances with the highest abnormal scores.
1: Build Laplacian matrix L from the adjacency matrix A;
2: Initialize DR, D

′

W and D
′′

W to be identity matrix.
3: Initialize R̃ = X(I + γDR + ϕL)−1.
4: Build orthogonal matrix P, Q and diagonal matrix Θ1,

Θ2 based on Lemma 2.
5: while objective function in Eq. (6) not converge do
6: Update W by Eq. (14);
7: Update D

′

W by setting D
′

W (i, i) = 1
2‖W(i,:)‖2 ;

8: Update D
′′

W by setting D
′′

W (i, i) = 1
2‖WT (i,:)‖2 ;

9: Update R̃ by Eq. (9);
10: Update DR by setting DR(i, i) = 1

2‖R̃T (i,:)‖2
;

11: end while
12: Compute the abnormal score for the i-th instance as
‖R̃(:, i)‖2;

13: Output top t instances with the highest abnormal scores.

The key steps of framework ANOMALOUS spotting
anomalies on representative attributes via CUR decomposi-
tion and residual analysis are summarized in Algorithm1. At
each iteration, the most cost operation is the matrix inverse
operation requiring O(n3) caused by matrix update. Fortu-
nately, the linear equation system can speed up the update of
R̃, only needing O(n2d) (d is usually smaller than n). Simi-
larly, the update of W requiresO(n2) which can be accelerat-
ed through calculating each column of Y in parallel. Conse-
quently, the total time complexity is #iterations∗(O(n2d)+
O(n2)), i.e., #iterations ∗O(n2d).

4 Experiments
In this section, we empirically evaluate the effectiveness of
the proposed framework ANOMALOUS on both synthetic and
real-world datasets. Specifically, we compare our approach
with six state-of-the-art methods which are popular in the
field of anomaly detection. Here, the compared methods in
experiments are listed as follows:

• SCAN [Xu et al., 2007]: SCAN only considers the net-
work structure information. It detects anomalies in a
structural level.
• LOF [Breunig et al., 2000]: LOF only considers at-

tributes of nodes and makes use of all attributes. It de-
tects anomalies in a contextual level.
• ConSub+CODA [Sánchez et al., 2013]: ConSub per-

forms the statistical selection of congruent subspaces as
a pre-processing step and then uses CODA to detect sub-
space community anomalies.
• ConOut [Sánchez et al., 2014]: For each node, ConOut

determines its subgraph and its statistically relevant sub-
set of attributes locally and then detects anomalies in
selected local context.
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D10 D20 D40 D60 D80

#nodes 1,000 1,000 1,000 1,000 1,000
#edges 1,434 1,322 1,349 1,361 1,448

#attributes 10 20 40 60 80
ratio of anomaly 10% 10% 10% 10% 10%

Table 1: Details of synthetic datasets

• AMEN [Perozzi and Akoglu, 2016]: AMEN uses both
attribute information and network structure information
to detect anomalous neighborhoods. Since it is designed
to detect an abnormal cluster rather than a single node,
we regard all nodes in anomalous clusters as anomalies
for comparison.
• Radar [Li et al., 2017]: Radar detects anomalies by

learning and analyzing the residuals of attribute infor-
mation and its coherence with network information.

In these algorithms listed above, the latter four take both
attribute information and structure information into consider-
ation. Only ConSub+CODA, ConOut and AMEN carry out
attribute selection, but they perform it as pre-processing step
independently of the following anomaly detection which may
easily lead to suboptimal results. We adopt the criteria of
AUC which is the area under the ROC curve to evaluate the
quality of various anomaly detection methods. The closer the
AUC value is to 1, the better performance of the algorithm is.
In addition, the parameter settings of these baseline methods
excluding AMEN and Radar follow the settings of [Sánchez
et al., 2013]. For AMEN and Radar, we choose the parameter
settings which can get the best experimental results. Consid-
ering the proposed framework has four different regulariza-
tion parameters, we tune these parameters by a ”grid-search”
strategy from {10−4, 10−3, . . . , 103, 104}. The detailed ex-
perimental results will be demonstrated later.

4.1 Synthetic Datasets
Considering the detection performance may be affected by
irrelevant attributes and increased attribute dimensions, we
design an experiment to evaluate the performance of each
baseline method and the proposed framework ANOMALOUS
w.r.t. different attribute dimensions. In order to make our
experiment more convincing, we adopt a public synthetic
dataset2 in [Sánchez et al., 2013] which contains attribute in-
formation with five different dimensions as well as the ground
truth labels of anomalies. The generated network diagram-
s follow a power law distribution in order to reproduce the
properties observed in real-world networks. Node attribute
information is divided into network structure related and net-
work structure irrelevant following uniform random distribu-
tion, each accounting for 50%. A brief description of this
synthetic datasets is shown in Table 1.

Performance Evaluation
The experimental results of all seven algorithms w.r.t. dif-
ferent attribute dimensions are depicted in Figure 2. We can
observe from the figure that our framework ANOMALOUS
achieves the best performance on five different dimensions of
attributes. Hence, it is safe to obtain the conclusion that our

2http://www.ipd.kit.edu/∼muellere/consub/
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Figure 2: Anomaly detection performance as a function of the num-
ber of attributes.

Disney Amazon Enron

#nodes 124 1,418 13,533
#edges 334 3,695 176,987

#attributes 28 28 20
ratio of anomaly 4.8% 2.0% 0.4%

Table 2: Details of real-world datasets

proposed algorithm is most robust to the increase of attribute
dimensions and irrelevant attributes. The main reason is that
ANOMALOUS can effectively filter out irrelevant attributes
and select representative attributes and instances simultane-
ously for anomaly detection. In addition, we can clearly see
that the performance of LOF tends to decrease with increased
attribute dimensions. Especially, since SCAN only considers
the structure information for anomaly detection, the change
in attribute dimensions has no effect on it.

4.2 Real-World Datasets
We adopt three attributed networks that have been widely
used in the previous research [Sánchez et al., 2015; Li et al.,
2017] to evaluate ANOMALOUS on real-world datasets. A-
mong them, Disney dataset is a network of movies including
many attributes such as ratings, prices and the number of re-
views. Amazon dataset is a network which contains various
books as nodes and has similar attributes as Disney. And En-
ron is a communication network with email transmission as
edges between email addresses, the attributes include aver-
age content length, average number of recipients, etc. Details
about these three datasets are listed in Table 2.

Performance Comparison
The anomaly detection performance of different approaches
on three real-world datasets is shown in Figure 3. Compared
to other methods, ANOMALOUS achieves the best perfor-
mance on all three datasets. We can attribute this improve-
ment to the joint selection of representative attributes and
instances for anomaly detection. In particular, the instances
that deviate significantly from the representative instances are
recorded as anomalies and the selection of representative at-
tributes can help us target for these representative instances
more accurately. As for ConSub+CODA, ConOut and A-
MEN, they treat subspace selection and anomaly detection
as two independent steps, there is no guarantee that the sub-
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Figure 3: Anomaly detection
performance of different approaches.
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Figure 4: Visualization of three anomalies
detected by ANOMALOUS on Disney dataset.

Effects of Instance and Attribute Selection on Anomaly Detection
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Figure 5: Effects of instance and
attribute selection on anomaly detection.

space selection made by these methods can effectively im-
prove the performance of anomaly detection. Moreover, Fig-
ure 4 shows the three detected anomalies by our method on
Disney dataset. Specifically, node N1 corresponds to the film
The Many Adventures of Winnie the Pooh and node N2 cor-
responds to the film Buzz Lightyear of Star Command, these
two nodes deviate significantly in the rating attributes from
the other co-purchased products. Node N3 corresponds to
the film The Nightmare Before Christmas / James and the Gi-
ant Peach is a typical structural anomaly since it is an isolated
co-purchase product. In a nutshell, our framework ANOMA-
LOUS can help us find anomalies of different formats.

Effects of Instance Selection and Attribute Selection
Among the four parameters in Eq. (6), α and β are relative-
ly more important since they control instance selection and
attribute selection respectively. In this subsection, we investi-
gate the impact of instance selection and attribute selection on
anomaly detection performance. We compare ANOMALOUS
with the following methods by varying α and β:

• Instance selection-based method: We set the parameter
β to be zero, therefore, only instance selection is taken
into consideration in the reconstruction phase.
• Attribute selection-based method: We set the parameter
α to be zero, therefore, only attribute selection is taken
into consideration in the reconstruction phase.

We show anomaly detection performance of each method
in Figure 5. As can be observed, the AUC values of instance
selection-based method and attribute selection-based method
are both lower than ANOMALOUS on all three datasets. This
phenomenon indicates that compared to only selecting in-
stances or attributes, considering both instance selection and
attribute selection can indeed improve the performance since
they choose representative instances and attributes simultane-
ously for anomaly detection which can alleviate the negative
effects brought from the noisy and irrelevant attributes.

5 Related Work
Typically, existing efforts on anomaly detection for net-
worked data are broadly divided into two classes: (1) anoma-
ly detection on plain networks; and (2) anomaly detection

on attributed networks [Akoglu et al., 2015]. For a plain
network, the only available information we can collect is
the network topology. Therefore, detecting anomalies using
structure information such as node degree and subgraph cen-
trality is a major feature of this kind of algorithms. Exist-
ing methods such as [Xu et al., 2007; Akoglu et al., 2010;
Tong and Lin, 2011] focus on spotting structural anoma-
lies in networks which do not belong to any communities.
As for an attributed network, it can be regarded as a rich-
er graph representation having both structure information
and attribute information. Hence, anomaly detection algo-
rithms exploit the structure as well as the coherence with
node attributes to detect anomalies. There are many exist-
ing methods [Long et al., 2006; Gao et al., 2010; Akoglu
et al., 2012] working on attributed networks attempt to par-
tition the given graph into structurally dense and attribute-
wise homogeneous clusters to find anomalies. But recent-
ly, researchers find that not all attributes are correlated to the
network structure, thus they conduct unsupervised feature s-
election (a.k.a. subspace selection) [Gunnemann et al., 2010;
Tang and Liu, 2012] to find relevant attributes for anoma-
ly detection. Among them, Consub+CODA carries out sub-
space selection first and then use CODA detects anomalies
[Sánchez et al., 2013]. ConOut determines a local context
for each node and then calculates the anomaly score within
the local context [Sánchez et al., 2014]. However, these al-
gorithms regard subspace selection and anomaly detection as
two independent steps which may lead to suboptimal results.
Different from existing works, our proposed algorithm treats
anomaly detection and attribute selection in a joint optimiza-
tion framework.

6 Conclusions and Future Work
In this work, we introduce a joint framework ANOMALOUS
based on CUR decomposition and residual analysis for spot-
ting anomalies on attributed networks, where attribute and
network structure information are collectively used for si-
multaneous attribute selection and anomaly detection. Ex-
periments on both synthetic and real-world datasets indicate
the effectiveness of our approach. Future work will concen-
trate on including edge attributes or finding adaptive method-
s [Anava and Levy, 2016] to remodel the network structure.
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selection for outlier ranking in graphs with multiple nu-
meric node attributes. In SSDBM, 2014.

[Sánchez et al., 2015] Patricia Iglesias Sánchez, Emmanuel
Müller, Uwe Leo Korn, Klemens Böhm, Andrea Kappes,
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