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Abstract—Because of their contribution to the overall reliabil-
ity assurance process, software logs have become important data
assets for the analysis of software systems. Logs are often the only
data points that can shed light on how a software system behaves
once deployed. Unfortunately, logs are often unstructured data
items, hindering viable analysis of their content. There are studies
that aim to automatically parse large log files. The primary goal
is to create templates from raw log data samples that can later
be used to recognize future logs. In this paper, we propose ULP,
a Unified Log Parsing tool, which is highly accurate and efficient.
ULP combines string matching and local frequency analysis to
parse large log files in an efficient manner. First, log events are
organized into groups using a text processing method. Frequency
analysis is then applied locally to instances of the same group to
identify static and dynamic content of log events. When applied
to 10 log datasets of the LogPai benchmark, ULP achieves an
average accuracy of 89.2%, which outperforms the accuracy of
four leading log parsing tools, namely Drain, Logram, SPELL
and AEL. Additionally, ULP can parse up to four million log
events in less than 3 minutes. ULP is available online as an open
source and can be readily used by practitioners and researchers
to parse effectively and efficiently large log files so as to support
log analysis tasks.

Index Terms—Log Parsing, Log Abstraction, Log Analytics,
Software Logging, Software Maintenance and Evolution.

I. INTRODUCTION

Logs are generated by logging statements inserted by
developers in the source code. An example of a logging
statement is shown in Figure 1, which is a code snippet
extracted from a Hadoop Distributed File System (HDEFS)
Java source file. The generated log event (Figure 1) is com-
posed mainly of two parts: the log header and log mes-
sage. The log header typically contains the timestamp (e.g.,
081109 283519), the process id (147), the log level (INFO),
and the logging function (dfs.DataNodePacketResponder).
The log message contains static tokens (usually text) such
as “Received block”, ”size of”, “from” in the example
of Figure 1 and dynamic tokens, which represent vari-
able values (blk_-1680999687919862986, 91178,
/10.250.14.224).

Log files include a plethora of information on the execution
of a software system that is used to help with different software
engineering activities, such as anomaly detection [1] [2] [3]

[4], debugging and comprehension of system failures [5] [6]
[7] [8] [9], testing and performance analysis [10] [11] [12],
operational intelligence [9] [11] [13] [14], failure prediction
[9] [15], detection of data leakage [16], and more recently, Al
for IT Operations (AIOps) [14] [17].

Logs, on the other hand, have traditionally been difficult
to work with. Typical log files may be considerably large (in
the order of millions of events) [8] [18] [19]. Furthermore,
the logging practice is known to be ad hoc, with no defined
best practices [20]. To make matters worse, logs are mainly
unstructured data files due to the lack of a standardized format
[1] [15] [19]. As a result, extracting relevant information from
large raw log files [21] [22] can be a daunting and time-
consuming task.

In this paper, we focus on the problem of log parsing, which
consists of (semi-)automatically converting unstructured raw
log events into a structured format that would facilitate future
analysis. Log parsing is further reduced to the problem of
parsing log messages. This is because log headers usually
follow the same format within the same log file. Parsing a log
message consists of automatically distinguishing the static text
from the dynamic variables. The result of parsing the log event
in Figure 1 is the extraction of the template in Received
Block <%x> of size <x> from <x>, which identifies
the log message structure. One way to parse log events
would be to use regular expressions [23] [24]. The problem
is that typical industrial log files may contain hundreds of
log templates as shown by Chow et al. [13] and Mi et al.
[25]. Furthermore, as the system evolves, new log formats
are produced due to the use of multiple logging libraries,
necessitating the ongoing updating of the regular expressions.
The use of regular expressions to parse various types of logs is
simply impractical, which has led researchers to develop more
intelligent log parsing techniques (see [20] for a good survey).
Existing approaches, however, suffer from many limitations
[20] including their reliance on domain knowledge, inability to
demarcate static content from dynamic variables for complex
log files, and use of advanced machine learning algorithms,
which require parameter tuning.

In this paper, we propose ULP (Unified Log Parser), a



of size 91178 from /10.250.14.224

Logging statement: LOG.info("Received Block”+ block + “of size” + block_size + ” from” + sender_ip)

Raw log line: 081109 283519 147 INFO dfs.DataNodePacketResponder: Received block blk_-1680999687919862986

Log template: Received Block <*> of size <*> from <*>

Fig. 1. An example of a logging statement, the generated log event, and the expected log template

simple yet powerful approach that recognizes log structures
from any log files without prior domain knowledge or the
use of complex machine learning techniques. ULP relies
on string matching and local frequency analysis. It begins
by grouping similar log events into groups using a string
matching similarity technique. It then uses frequency analysis
on instances of each group to distinguish between static and
dynamic log message tokens. We conjecture that tokens that
are more often repeated in the same group of similar log
events are more likely static tokens than dynamic tokens. This
is not the first time that frequency analysis is used in log
parsing. Other tools such as Drain [26] and Logram [27] also
use frequency analysis. However, these tools apply frequency
analysis to the entire log file, which makes it hard to find a
clear demarcation between static and dynamic tokens. ULP, on
the other hand, applies frequency analysis to log events that
belong to the same group rather than to the entire log dataset,
increasing the likelihood of distinguishing between static and
dynamic tokens.

We compared ULP to four major log parsing tools, namely
Drain [26], AEL [24], SPELL [28], and Logram [27] by
applying them to 10 log datasets from the LogPai benchmark'.
Our findings show that ULP outperforms existing tools in
parsing all the log datasets. Our technique has an average
accuracy of 89.2 %, while the second-best method, Drain,
has an average accuracy of 73.7 %. Furthermore, ULP can
parse big files containing up to 4 million log events in under
3 minutes.

ULP is available as an open source tool and accessible
online?. Practitioners can readily embed ULP into their log
analytic suite and not have to worry about creating parsers that
are tailored to specific log files, which we believe may result
in improved productivity and better software maintenance.

The organization of this paper is as follows: Section II
looks at the actual approaches used in log parsing and how
they compare to our solution. We present the ULP approach
in Section III. Section IV focuses on the evaluation of ULP
using 10 log files. Section V highlights the distinctiveness of
our technique and explores the reasons why ULP outperforms
other comparable approaches, followed by threats to validity.
We conclude the paper in Section VII and discuss future
directions.

Uhttps://github.com/logpai
Zhttp://zenodo.org/record/6425919

II. RELATED WORK

In recent years, log analysis has received a great deal of
attention from researchers and practitioners due to the in-
creasing need to understand complex systems at runtime. One
of the most comprehensive survey of log parsing techniques
is the one proposed by El-Masri et al. [20] in which the
authors proposed a quality model for classifying log parsing
techniques and examined 17 different log parsing tools using
this model. Existing tools can be categorized into groups
based on the techniques they use, namely rule-based parsing
tools, frequent token mining, natural language processing,
and classification/clustering approaches. We discuss the main
approaches in what follows and conclude with a general
comparison of ULP with these techniques.

Jiang et al. [29] introduced AEL (Abstracting Execution
Logs), which is a log parsing method that relies on textual
similarity to group log events together. AEL starts by detect-
ing trivial dynamic tokens using hard-coded heuristics based
on system knowledge (e.g., IP addresses, numbers, memory
addresses). The resulting log events are then tokenized and
assigned to bins based on the number of terms they contain.
This grouping is used to compare the log messages in each
bin and abstracts them into templates. The problem with AEL
is that it assumes that events that contain the same number
of terms should be grouped together, resulting in many false
positives.

Vaarandi et al. [30] [31] proposed SLCT (Simple Logfile
Clustering Tool). The authors used clustering techniques to
identify log templates. SLCT groups log events together based
on their most common frequent terms. To this end, the
approach relies on a density-based clustering algorithm to
recognize the dynamic tokens, SLCT uses frequency analysis
across all log lines in the log file. LogCluster [17] is an
improved version of SLCT proposed by the same authors.
LogCluster extracts all frequent terms from the log messages
and arranges them into tuples. Then, it splits the log file into
clusters that contain at least a certain number of log messages.

Another clustering approach is the one proposed by
Makanju et al., which is called IPLOM (Iterative Partition-
ing Log Mining) [32]. IPLOM employs a heuristic-based
hierarchical clustering algorithm. In this approach, the first
step is to partition the log messages. For this, the authors
used heuristics considering the size of log events. The next
step is to further divide each partition based on the highest



number of similar terms. Fu et al. proposed LKE (Log Key
Extraction) [33], another clustering-based approach, using a
distance-based clustering technique. Log events are grouped
together using weighted edit distance, giving more weight to
the terms that appear at the beginning of log events. Then,
LKE splits the clusters until each raw log level in the same
cluster belongs to the same log key and extracts the common
parts of the raw log key from each cluster to generate event
types.

Hamooni et al. proposed LogMine [34], which uses MapRe-
duce to abstract heterogeneous log messages generated from
various systems. The LogMine algorithm consists of a hierar-
chical clustering module combined with pattern recognition. It
uses regular expressions based on domain knowledge to detect
a set of dynamic variables. Then, it replaces the real value of
each field with its name. It then clusters similar log messages
with the friends-of-friends clustering algorithm.

Natural Language Processing (NLP) techniques have also
been used for log parsing. Logram, a recent approach proposed
by Dai et al. [27], is an automated log parsing approach
developed to address the growing size of logs, and the need for
low-latency log analysis tools. It leverages n-gram dictionaries
to achieve efficient log parsing. Logram stores the frequencies
of n-grams in logs and relies on the n-gram dictionaries
to distinguish between static tokens and dynamic variables.
Moreover, as the n-gram dictionaries can be constructed
concurrently and aggregated efficiently, Logram can achieve
high scalability when deployed in a multi-core environment
without sacrificing parsing accuracy. Kobayashi et al. pro-
posed NLP-LTG (Natural Language Processing—Log Template
Generation) [35], which considers event template extraction
from log messages as a problem of labeling sequential data
in natural language. It uses Conditional Random Fields (CRF)
[36] to classify terms in log messages as static or dynamic.
To construct the labeled data (the ground truth), it uses human
knowledge and regular expressions. Thaler et al. [37] proposed
NLM-FSE (Neural language Model-For Signature Extraction)
, which trains a character-based neural network to classify
static and dynamic parts of log messages.

He et al. [26] proposed Drain, a tool that abstracts log
messages into event types using a parse tree. Drain algorithm
consists of five steps. Drain starts by preprocessing raw log
messages using regular expressions to identify trivial dynamic
tokens, just like ULP. Then, it builds a parse tree using the
number of tokens in log events. Drain assumes that tokens that
appear in the beginning of a log message are most likely static
tokens. It uses a similarity metric that compares leaf nodes to
event types to identify log groups.

Spell (Streaming Parser for Event Logs using an LCS) [28]
is a log parser, which converts log messages into event types.
Spell relies on the idea that log messages that are produced
by the same logging statement can be assigned a type, which
represents their longest common sequence. The LCS of the
two messages is likely to be static fields.

The main difference between ULP and existing approaches
lies in the way ULP is designed. ULP leverages the idea that

static and dynamic tokens of log events can be better identified
if we use frequency analysis locally on instances of log events
that belong to the same group. To this end, it uses a string
matching technique to create groups of similar events. This
is contrasted with techniques that use clustering alone (e.g.,
AEL and IPLOM) and those that apply frequency analysis to
the entire log file (e.g., Drain and Logram), i.e., globally. As
we will see in the evaluation section, these design choices
make ULP a very accurate and efficient log parser compared
to leading open source log parsers.

III. APPROACH

ULP consists of the following steps: pre-processing, group-
ing of similar log events, and the generation of log tem-
plates using local frequency analysis. The first step is a pre-
processing step where the header such as the timestamp, the
log level, and the logging function are identified. We also
detect trivial dynamic tokens such as IP and MAC addresses
based on common regular expressions. The second step of
ULP is to identify similar log events and group them together.
To this end, we use text similarity measures. Once the groups
of similar log events are formed, we apply frequency analysis
to instances of each group to determine the static and dynamic
tokens, and derive the various log templates that are then
mapped back to each log event. Algorithm 1 shows the steps
of ULP. We explain each step in more detail in the following
subsections. To illustrate our approach, we use the sample log
events from the HDFS log dataset (one of the datasets used
to evaluate ULP) shown in Figure 2. We added a line number
to each log event to help explain the approach.

A. Pre-processing

The pre-processing of log events begins by delineating
the header information, including the timestamp, process ID,
log level, and logging function (Lines 1-3, Algorithm 1).
Prior research showed that this information can be read-
ily identified using simple regular phrases [27]. Figure 2
shows that all the HDFS log events of the running ex-
ample begin with a timestamp (e.g., 081109 203615), a
process ID (148), a log level (INFO), and a logging func-
tion dfs.DataNode$PacketResponder. Another essen-
tial part of the pre-processing step is the identification of trivial
dynamic variables such as IP and MAC addresses. Identifying
such variables can improve the parsing accuracy as shown by
He et al. [38] and all the tools studied in this paper (i.e.,
Drain [26], SPELL [28], Logram [27] and AEL [24]) include
this step in their approach. For ULP, this step also increases
the chances of identifying similar log events that should be
instances of the same group. Grouping of similar events is
discussed in more detail in the next subsection. We created
regular expressions to detect the following trivial dynamic
variables: Mac addresses, IPV6 addresses, URLs (beginning
with HTTP and HTTPS), numerical in hexadecimal format,
Dates such as 2002-03-24 and 2002-03-24, Time in the
format hh:mm: ss. These regular expressions can be found



1 081109 203615 148 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block

b1k_38865049064139660 terminating

2 081109 203807 222 INFO dfs.DataNode$PacketResponder: PacketResponder @ for block

blk_—-6952295868487656571 terminating

3 081109 204005 35 INFO dfs.FsNameSystem: BLOCKx NameSystem.addStoredBlock: blockMap
updated: 10.251.73.220:50010 is added to blk_7128370237687728475 size 67108864

4 081109 204015 308 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block

blk_8229193803249955061 terminating

5 081109 208106 329 INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block

blk -6670958622368987959 terminating

6 081109 204132 26 INFO dfs.FsNameSysEem: BLOCK* NameSystem.addStoredBlock: blockMap
updated: 10,251.43.115:50010 is added to blk_3050920557425079149 size 67105864

7 081109 204328 34 INFO dfs.FsNameSystem: BLOCK* NameSystem.addStoredBlock: blockMap
updated: 10,251.203.80:50010 is added to blk_7688946331004732825 size 67105864

8 081109 201453 24 INFO dfs.FsNameSystem: BLOCKx NameSystem.addStoredBlock: blockMap
updated: 10.250.11.85:50010 is added to blk_2377150260125000006 size 67108064

9 081109 204525 512 IF0 dfs.DatatlodefPacketResponder: PacketResponder 2 for block

blk_572492839787299681 terminating

10 081109 201655 556 INFO dfs.
b1k_3587505140051952248 of

11 081109 204722 567 INFO dfs.
b1k_5407003568334525940 of

12 081109 204815 653 INFO dfs.
b1k_9212264480425680329 of

DataNode$PacketResponder: Received block
size 67108864 from /10.251.42.84

DataNode$PacketResponder: Received block
size 67108864 from /10.251.214.112

DataNode$PacketResponder: Received block
size 67108864 from /10.251.214.111

Fig. 2. HDFS log events used as a running example

in ULP code repository®. Furthermore, ULP allows users to
define additional regular expressions to represent domain-
specific variables. It is worth mentioning that all the regular
expressions used by ULP are generic and independent from the
log files to be parsed, unlike other tools that include regular ex-
pressions for detecting log-specific variables at the risk of lim-
iting its generalization. For instance, v’ blk_ (|-) [0-9]+’
is used in Logram to detect block ids within HDFS log files.

The result of applying the pre-processing step to the HDFS
running example is shown in Figure 3, where the header
information is detected and removed, and the IP addresses in
Lines 3, 6, 7, 10, 11, and 12 are replaced by <*>, indicating
that they are dynamic tokens.

B. Grouping similar log events

The second step of ULP is to group similar log events
together (Lines 4 to 6 of Algorithm 1). This grouping will
help later distinguish between the static and dynamic tokens by
applying frequency analysis to instances of each group. For ex-
ample, the log messages of Lines 1, 2, 4, 5, and 9 all deal with
terminating PacketResponder (used by HDFS to manage
the processing of data into a series of pipeline nodes) and only
vary in terms of the task_number and the block_id. So if we
can put these log messages into the same group, we can eas-
ily see that the static tokens (PacketResponder, for,
block, terminating) appear in all the log events of that
group, and that the dynamic tokens, i.e., the task_number

3http://zenodo.org/record/6425919

1 PacketResponder 1 for block blk_38865049064139660 terminating
2 PacketResponder @ for block blk_-6952295868487656571 terminating

3 BLOCKx NameSystem.addStoredBlock: blockMap updated: <> is added
blk_7128370237687728475 size 67108864

PacketResponder 2 for block blk_8229193803249955061 terminating
PacketResponder 2 for block blk_-6670958622368987959 terminating

6 BLOCK% NameSystem.addStoredBlock: blockMap updated:
b1k_3050920557425079149 size 67105864

7 BLOCKx NameSystem.addStoredBlock: blockMap updated:
b1k_7688946331004732825 size 67105864

8 BLOCKx NameSystem.addStoredBlock: blockMap updated:
blk_2377150260125000006 size 67108064

9 PacketResponder 2 for block blk_572492839787299681 terminating
10 Received block blk_3587505140051952248 of size 67108864 from <x>
11 Received block blk_5407003568334525940 of size 67108864 from <x>
12 Received block blk_9212264480425680329 of size 67108864 from <>

<*> is added
<*> is added

<> is added

Fig. 3. Results of pre-processing the HDFS log events example

and the block_id, vary from one log event to another, hence
the idea of using frequency analysis on instances of the same
group instead of applying it to the entire log file, which may
not lead to such a clear demarcation.

Our grouping strategy relies on a string matching technique.
We measure the similarity of two log events based on the
number of tokens they contain combined with the tokens
that are most likely static tokens (i.e., tokens that do not
contain digits and/or special characters). To do this, for each
log event, we first count the number of words it contains.
A word is defined as any token that is delimited by a

to

to

to

to



Algorithm 1: Overall ULP Algorithm
Data: LogFEvents
Result: LogTemplates, GroupO f Logs
1 foreach LogFEvent € RawLogfile do
2 LogFEvent + RemoveH eader(LogFEvent)
3 LogEvent < RemovePunctuation(LogEvent)
4 LogEvent <
RemoveObvious DynamicT okens(LogFEvent)
/* Generate an id for a Log event
based on the tokens that are not
deemed dynamic, and the count of
tokens */
5 LogEvent.Id < Generatelds(LogFEvent)

GroupO fLogs <+
LogEvents.GroupBy(LogEvent.Id)
LogTemplates + []

foreach g € GroupO fLogs do

/+ Dimensions reduction to improve

algorithm performance */

8 subGroup < Sample(g)

/+* The template will be constructed

base on one of the Log events by
removing dynamic tokens and

=)

~

replacing them by <*> x/
9 template < subGroup|0]
/* Get the group vocabulary */

10 Tokens < GetV ocabulary(subGroup)

/+ Count occurences avoid duplicate
for each Log event */

subGroup.CountT okensAvoid Duplicate Per Event()

foreach ¢ € Tokens do

/+ static tokens appear all the
time in the subgroup, we
remove dynamic tokens out of
the template */

if ¢.count<subGroup.length then

L p < template. Remove(t)

11
12

13
14

15
16

LogTemplates. Append(template)
| g-template = template

17 GroupO fLogs +

mergeGroupWithSimilarTemplate(GroupO f Logs)

space character. Note we do not use any other delimiters to
prevent splitting a dynamic variable into multiple tokens. For
example, the token 04:09:19.989 is considered by ULP
as one token. Then, we identify tokens that only contain
alphabetical letters. In other words, we ignore tokens that
contain digits and/or special characters, which are most
likely dynamic tokens. Finally, we convert the log event
into a string that results from concatenating the alphabetical
tokens and the total number of tokens. Two log events are
grouped together if there is an exact match (i.e., 100%)
between their corresponding strings. For example, the two

following log events: "block x23 from 125.12.1.1
allocated to block x45" and "block x23 from
125.125.123.144 allocated to block x125"
will be grouped together since they contain the same number
of tokens (8) and the same alphabetical tokens and that also
appear in the same order block from allocated to
block.

Another alternative design would be to consider similar but
not necessarily identical strings. For this, we would need to
define a threshold beyond which two log events can be deemed
similar. Setting such a threshold may be a difficult task since it
may vary from one group of events to another. We deliberately
opted for a grouping technique that requires an exact match to
prevent the use of thresholds, which may necessitate human
intervention or advanced statistical methods to determine the
right threshold.

Applying the grouping approach to the log messages of
Figure 3 results in three groups. The first one consists of
log messages 1, 2, 4, 5, and 9, which contain the static
token PacketResponder. The second pattern consists of
log messages 3, 6, 7, and 8, representing the message
BLOCK* NameSystem.addStoredBlock: blockMap
update. The last one contains log messages 10, 11, and 12
for the Received block log event. At this stage, we have
only identified the groups. The next step will leverage local
frequency analysis to detect the dynamic tokens and associate
a template to log events within each group.

C. Generation of log templates using local frequency analysis

In this step, we analyze the occurrences of the tokens of
each group of log events by counting the number of times
each token appears in the log events that belong to the same
group (Lines 7-16 of Algorithm 1). As explained earlier, we
expect to see static tokens appear all the time in each log event
of the same group (because of the way our grouping technique
works), while the dynamic tokens are expected to occur only in
some log events and not all of them. Therefore, we consider
anything that occurs less that the maximum frequency as a
dynamic token. It should be noted that in our approach, we
are more interested in the occurrences of a dynamic token
over several log events than in a single log event. Counting
the same token twice in the same log event raises its frequency
across several log events in the same group, which introduces
a bias. Duplicates in the same log event are counted only
once to prevent this bias. For example, if the token block
occurs twice in the same log event, it will be counted as
one occurrence in this event, not two. Table 1 displays the
frequency of the tokens of log events of the first group, which
consists of the following events:

1) PacketResponder 1 for block
blk_38865049064139660 terminating
PacketResponder 0 for block
blk_-6952295868487656571 terminating
PacketResponder 2 for block

blk_8229193803249955061 terminating

2)

3)



4) PacketResponder 2 for block
blk_-6670958622368987959 terminating
5) PacketResponder 2 for block
blk_572492839287299681 terminating
In this group, the terms
for, block, terminating appear five times
maximum frequency). The other tokens (task numbers
0, 1, 2, and block ids blk_38865049064139660,
blk_-6952295868487656571,
blk_8229193803249955061,
blk_-6670958622368987959,
blk_572492839287299681) appear less
times. ULP classifies them as dynamic tokens.

PacketResponder,
(the

than five

HDEFS as shown in Table II. They are used extensively in the
literature (e.g., Drain [26], SPELL [28], and Logram [27]).

This evaluation aims to answer the following two research

questions:

1) RQI1. What is the accuracy of ULP in parsing the 10 log
files of the LogPai benchmark and how does it compare
to leading log parsing tools?

2) RQ2. What is the efficiency of ULP and how does it
compare to leading log parsing tools?

TABLE 11
LOGPAI DATASETS

Datasets Description Size
TABLE 1 Apache Apache server error log 5.1IMB
EXAMPLE OF A FREQUENCY ANALYSIS RESULT APPLIED TO THE FIRST BGL Blue Gene/L supercomputer log 743MB
GROUP OF LOG EVENTS HDFS Hadoop distributed file system log | 1.47GB
Hadoop Hadoop mapreduce job log 2MB
Term Frequency | Classification HPC High performance cluster 32MB
PacketResponder 5 out of 5 static token Proxifier Proxifier software log 2.42MB
0 1 out of 5 dynamic token Spark Spark job log 166MB
1 1 out of 5 dynamic token Thunderbird | Thunderbird supercomputer log 29.60GB
2 3 out of 5 dynamic token Openstack OpenStack software log 41MB
for Soutof 5 static token Zookeeper ZooKeeper service log 10MB
block 5 out of 5 static token
blk_38865049064139660 1 out of 5 dynamic token . .
blk_-6952295868487656571 1 out of 5 dynamic token We evaluated ULP using accuracy and efﬁ01ency. We also
blk_8229193803249955061 1 out of 5 dynamic token compared ULP to four leading log parsing tools, namely Drain
blk_-6670958622368987959 | 1 out of 5 dynamic token [26], AEL [24], SPELL [28] and Logram [27]. We selected
blk_572492839287299681 Loutof 5 | dynamic token these tools because prior studies [23] [27] [38] showed that
terminating Soutof 5 | static token these tools yield the highest accuracy and efficiency compared

The resulting template from applying local frequency anal-
ysis to this group of events is: PacketResponder <x>
for block <*> terminating. The generated log tem-
plates when applying local frequency analysis to the log
events of the running example are shown below. Except for
67108864 (the size of a data block in HDFS), ULP was
able to uncover all the static and dynamic tokens. ULP was
no able to detect the dynamic token 67108864 because we
are examining a small sample of log events. In practice, the
application of ULP to large HDFS log files should be able
to detect this variable at some point in time when a different
variable appears in another log event of the same group.

1) PacketResponder <*> for block <*x>

terminating

2) BLOCKx NameSystem.addStoredBlock:

blockMap updated: <*> is added to <*>
size 67108864

3) Received block <x> of size 67108864

from <x>

IV. EVALUATION

In this section, we evaluate the effectiveness of ULP in
parsing logs of 10 log datasets of the LogPai benchmark [23]
available online*. The datasets consist of a collection of log
files, generated from various systems including Apache, HPC,

“https://zenodo.org/record/3227177#.Y UqmXtNPFRE

to other log parsing tools such as SLCT. We ran the same
experiments with the selected log parsers using the most recent
version of their publicly accessible source code.

A. Accuracy

Each log dataset of the LogPai benchmark used in this
study comes with a subset of 2,000 log events that have
been parsed manually by the LogPai team. The log templates
were identified and each log event out of the 2,000 events
was associated with a specific log template. This ground truth
dataset is meant for researchers to test their Log parsers and
has been used by many log parsing tools such as Drain [26],
AEL [24], Lenma [39], IPLoM [32], and Logram [27]. We
also use it in this study to evaluate ULP and to compare
ULP with existing tools. Table III shows an example of events
from the Apache 2,000 labelled log events where a log event
(represented here by an id starting with ”E”) is mapped to a
template that was extracted manually by the LogPai team.

The way accuracy is measured in related studies is based
on the work of Zhu et al. [23] where the authors compared
the accuracy of 13 log parsing tools including some of the
tools used in this paper (Drain, AEL, and Spell). Logram,
which was published after the work of Zhu et al. [23], also
uses the same approach. Zhu et al.’s accuracy metric is based
on the number of log events that are correctly identified as
belonging to the same template when compared to the ground
truth. This metric, however, does not check if the template



TABLE III
AN EXAMPLE OF MANUALLY LABELED LOG EVENTS FROM THE APACHE
LOG DATASET

TABLE V
ACCURACY OF ULP COMPARED TO OTHER LOG PARSERS. WE
HIGHLIGHTED THE HIGHEST RESULTS IN BOLD.

Event ID | Event Template Name Drain | Logram | Spell | AEL | ULP
El jk2_init() Found child <*>in scoreboard slot <*> HDFS 0.996 0.981 0.500 | 0.434 | 0.999
E2 workerEnv.init() ok <*> Apache 0.693 0.050 0.269 | 0.000 | 0.699*
E3 mod_jk child workerEnv in error state <*> HPC 0.745 0.877 0.662 | 0.045 | 0.944
E4 [client <*>] Directory index forbidden by rule: <*> Proxifier 0.380 0.000 0.015 | 0.117 | 0.979
ES5 jk2_init() Can’t find child <*>in scoreboard ThunderBird | 0.868 0.114 0.781 | 0.021 | 0.970
E6 mod_jk child init <*><*> Openstack 0.400 | 0.000 0.170 | 0.000 | 0.801
Spark 0.979 0.201 0.863 | 0.363 | 0.995
Zookeeper 0.962 0.722 0.918 | 0.046 | 0.971
in question is the same as the one in the ground truth. In Hadoop 0.546 | 0.125 0.293 | 0.000 | 0.660*
. . . .. . . . . BGL 0.810 0.457 0.702 | 0.004 | 0.910
our opinion, this metric is misleading since it does not assess NG 0737 0353 03517 10103 1 0.892
the ability of a log parser to extract the exact templates as
the ones in the ground truth. In other words, Zhu et al’s
TABLE VI

metric is necessarily but not sufficient. In this paper, we go
one step further by not only comparing if the log events
are correctly classified as having the same template, but also
checking that the templates we extract are exactly the same as
the ones in the ground truth. More precisely, to measure the
accuracy of ULP, we compare the templates extracted by ULP
to those provided by LogPai for the 2,000 log events of the
log datasets shown in Table II. The accuracy is the number
of matches divided by 2,000. We apply the same procedure to
other log parsing tools and compare our results to theirs. A
match is considered if the following requirements are satisfied:
(1) all static tokens are detected and displayed in the correct
location in the ground truth file; (2) all dynamic variables were
identified and replaced by <x>; (3) all dynamic variables are
shown in the same order as the ground truth; (4) no extra static
or dynamic tokens were added. Table IV shows an example
of the manual comparison we performed.

TABLE IV
AN EXAMPLE THAT SHOWS HOW WE MEASURE THE ACCURACY OF ULP

Ground truth Match or Not

Template

ULP Generated Explanation
Templ

Cannot open
channel to <*>at
election address
[<HE> <>

Cannot open
channel to
<*>at election
address <*>]

1

Static text is detected cor-
rectly. Dynamic tokens are
identified. the gap is that
ground truth is interpreting
IP address with port as 2
variables and the parsing
tool as one, which is accept-
able.

Expiring session
<*>, timeout of
<*>ms exceeded

[expiring session
<*>timeout of
10000ms
exceeded]

Only one dynamic token has
been identified out of two.
The parsing is then consid-
ered incorrect.

Results: Table V shows the results of ULP accuracy. ULP
has the best accuracy in parsing all the log datasets in
comparison to all the other tools assessed in this study (i.e.,
Logram, SPELL, AEL, and Drain). Additionally, our approach
has an average accuracy of 89.2%, whereas the second most
accurate method, Drain, has an average accuracy of 73.7%.
Table VI shows the effect size using Cliff’s §, which is a
statistical test that indicates the magnitude of that difference
[40]. The effect size is considered small when 0.147 < § <
0.33, medium for 0.33 < § < 0.474, and large for § > 0.474.
[41]. Cliff’s ¢ is defined using Equation(1). As shown in Table
VI, the difference between the accuracy of ULP and that of

THE CLIFF’S EFFECT SIZE TEST RESULTS

Algorithm name | CIliff’s Delta
Drain 0.39
Logram 0.74
Spell 0.76
AEL 1.00

Logram, SPELL, and AEL is significantly large (Cliff’s delat
> 0.474). It is medium in the case of Drain.

Zi Zj Szgn(y7 - xj)

Ny Ny

Cliff's 6 = (1)

We carefully examined the log templates that ULP
missed to understand the causes. We found that some
errors and inconsistencies in the manual labelling of the
benchmark files misled the performance of ULP. For example,
the token CrazyIvandé6 in the log event labeling
NETClientConnection evaluate
CrazyIvan46 CI46 Perform CrazyIvan46 is
considered as a static token, which is an error in the
labelling of the data. This should be labelled as a dynamic
token because it refers to a username. Another cause of
misclassification is the presence of dynamic variables whose
values do not change over a large number of log events.
For example, the token “workers2.properties” was repeated
568 times in one of the datasets. ULP misclassified it as
a static token. The good thing about ULP is that, unlike
many existing tools including Drain, it does not make any
assumptions about the order of static and dynamic tokens,
which reduces significantly the number of false positives.
Table VII shows some other examples of errors in the ground
truth files causing the low accuracy results of ULP when
applied to Hadoop and Apache logs. This seems to affect the
other parsers as well (see Table V).

RQ1 Finding: The accuracy of ULP when applied to
10 log files of the LogPai benchmark is between 66%
and 99.9% with a average of accuracy of 89.2%. ULP
outperforms Drain, Logram, Spell, and AEL in the
parsing of all the 10 log files.




TABLE VII
EXAMPLES OF ISSUES WITH THE GROUND TRUTH FILES FOR APACHE AND
HADOOP LOG DATASETS

Log event Template from Explanation of the issue
ground truth file with the ground truth
file
Disk quotas Disk quotas Interpreting one dynamic
dquot_6.5.1 dquot_<*>.<*>.<*> token as many.

data_thread() got not
answer from any
[Thunderbird_A]
datasource

data_thread() got not A dynamic variable is a
answer from any whole, can not be split.
[Thunderbird_<*>] The dynamic variable
datasource should replace the whole
string Thunderbird_34.
Multiple dynamic vari-
ables are identified as
one. This may be confus-
ing since the practitioner
loose the info about the
number of dynamic tokens
contained in the event.
workerEnv.init ok The token work-
workers2.properties ers2.properties does
not change and does not
have any other value,
which make him be
interpreted  as  static
(occurrences 568).

Warning: we failed
to resolve data
source name dn910
dn911 dn912 dn913
dn914 dn915

Warning: we failed
to resolve data
source name <*>

workerEnv.init ok
workers2.properties

B. Efficiency

To evaluate ULP’s efficiency, we record the execution time
to complete the end-to-end parsing process. We repeated the
experiment 10 times to avoid any bias and took the average
of the execution times. We also run the same experiments for
Drain, Logram, and SPELL on our computer and record the
running parsing time for these programs in the same manner.
We did not assess AEL’s efficiency because it has a very poor
accuracy (average accuracy of 10%, as indicated in Table V)).
We run the experiments using a MacBook Pro laptop running
macOS Big Sur version 11.4 and equipped with a 6 Intel Core
17 CPU operating at 2.2GHz, 32GB 2400MHz DDR4 RAM,
and a 256 GB SSD hard drive. We use the datasets indicated
in Table VIII, publicly accessible in the LogPai benchmark.
We selected these datasets because they have previously been
used to measure efficiency in other research studies [27] and
[26]. We assess efficiency for each log dataset by running ULP
and the other tools on random log samples of increasing size,
as indicated by the number of log lines so as to examine how
the parser’s efficiency changes as the file become larger. This
was by inspired by the way efficiency was assessed for Drain
[26], which uses this log dataset splitting, except that Drain
uses the file size rather than the number of log events.

TABLE VIII
NUMBER OF LOG EVENTS OF THE SAMPLE LOG FILES USED TO MEASURE
EFFICIENCY
BGL 400 4,000 | 40,000 | 400,000 | 4,000,000
HPC 600 3,000 | 15,000 | 75,000 375,000
HDFS 1,000 | 5,000 | 10,000 | 100,000 | 1,000,000
Zookeeper | 4,000 | 8,000 | 16,000 | 32,000 64,000
Spark 1,000 | 5,000 | 10,000 | 100,000 | 1,000,000
1) Results: Figure 4 shows the efficiency of ULP. ULP

requires less than 50 seconds to parse one million log lines

from the HDFS log file and less than three minutes to parse
four million lines from the BGL log file. ULP’s efficiency is
comparable to that of Logram (the quickest log parsing tool
evaluated in this paper). It is worth mentioning that Logram
uses an upfront step to fine-tune the threshold for proper
parsing. This step is not included in our analysis of Logram’s
efficiency because the corresponding code is not available in
Logram’s Github repository.

RQ2 Findings: ULP can parse up to 4 million log events
in less than 3 minutes. It is more efficient than Drain and
and Spell when applied to HDS, Spark, Zookepr, HPC,
and BGL log files. It exhibits similar efficiency as Logram
except for Zookeeper and for large HPC and BGL log
files where Logram has a noticeably better efficiency.

V. DISCUSSION

The primary difference between ULP and existing ap-
proaches lies in the way ULP is designed. ULP leverages
the idea that static and dynamic tokens of log events can
be better identified if we use frequency analysis locally on
instances of log events that belong to the same group rather
than in the entire log file. The similarity technique used to
group log events is also unique. This design choice yields
excellent results as shown in the previous subsections. It
should be noted, however, that the sole reliance on local
frequency analysis does not guarantee the detection of all
dynamic tokens. If the same dynamic token is repeated as
many times as static tokens, it will be misclassified by ULP.
One way to address this is to improve the pre-processing step
by targeting such variables.

Additionally, as opposed to other log parsers, ULP makes
no assumptions about the position of a static or dynamic token.
Drain, for example, assumes that a token that appears in the
beginning of a log message is a static token, which is not
always valid. Furthermore, ULP is able to detect dynamic
tokens and log templates from a variety of unknown log files
without using domain knowledge regular expressions during
the pre-processing stage such it is the case for Drain [26] and
Logram [27]. ULP leverages only generic regular expressions.

Another assumption made by Drain’s authors is that log
events with a similar length belong to the same group without
necessarily checking the content of the events, which results
in classifying very different log events into the same group.
ULP overcomes this problem by applying a rigorous string
matching technique to ensures that log events can only be
grouped together if they share the same static tokens. In
Table IX, we summarized some of the parsing errors in
Drain caused by the assumptions in the design of the tool.
As for Logram, one of its main limitations consists of the
way it deals with log events that appear only once. For these
events, the whole log template is considered by Logram to
be composed of only dynamic variables. Another limitation
of logram is related to the use of n-grams, which leads to
the situation where n-gram sequences may be considered as
dynamic variables if they do not occur as frequently as other
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n-grams. For example, in the log event "Resolved
04DN8IQ.fareast.corp.microsoft.com

to /default-rack", the 2-gram "Resolved
04DN8IQ.fareast.corp.microsoft.com"™ appears
only twice in the log file as opposed to the 2-gram "to
/default-rack" which appears more frequently, the
template generated for this log event is "<%> <%> to
/default-rack", which is not valid ("Revolved"
should be detected as a static token).

In some ways, our approach is closer in principle to that
of AEL. It is possible to categorize log events based on
linguistic commonalities using the AEL approach. However,
starting with simple dynamic patterns, AEL uses hard-coded
algorithms based on system information (e.g., IP addresses,
numbers, and memory locations) to identify more complex

patterns. The generated log events are then tokenized and
binned based on the number of words they contain. This
categorization evaluates the log messages in each bin before
abstracting them into templates for use elsewhere in the
system. The difficulty with AEL is that it assumes that events
with the same number of words belong to the same group,
resulting in many false positives when analyzing log events.
ULP makes use of string matching similarity, which combines
static tokens and the number of tokens in a log event, to
overcome this problem.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of this
study, which are organized as internal, external, conclusion,
and reliability threats.

375k



TABLE IX

EXAMPLE OF FLAWS INTRODUCED BY DRAIN PARSING ASSUMPTIONS

Log event

Drain grouping

Ground truth grouping

ULP grouping

attempt_123 TaskAttempt Transi-

<*><*>Transitioned

attempt_ < *>TaskAttempt

<*>TaskAttempt Transitioned from

SCHEDULED to RUNNING

from <*>to <*>

SCHEDULED to RUNNING

tioned from NEW to UNAS- | from <*>to <*> Transitioned from NEW to | NEW to UNASSIGNED

SIGNED UNASSIGNED

task_123 Task Transitioned from | <*><*>Transitioned task_<*>Task Transitioned from | <*>Task Transitioned from NEW to
NEW to SCHEDULED from <*>to <*> NEW to SCHEDULED SCHEDULED

task_123 Task Transitioned from | <*><*>Transitioned task_<*>Task  Transitioned from <*>Task Transitioned from SCHED-

ULED to RUNNING

attempt_123TaskAttempt  Transi-
tioned from RUNNING to SUC-
CESS_CONTAINER_CLEANUP

<*><*>Transitioned
from <*>to <*>

attempt_<*>TaskAttempt
Transitioned from RUNNING to
SUCCESS_CONTAINER_CLEANUP

<*>TaskAttempt Transitioned
from RUNNING to SuUC-
CESS_CONTAINER_CLEANUP

attempt_123 TaskAttempt
Transitioned from RUNNING to
FAIL_CONTAINER_CLEANUP

<*><*>Transitioned
from <*>to <*>

attempt_<*>TaskAttempt
Transitioned from RUNNING to
FAIL_CONTAINER_CLEANUP

<*>TaskAttempt Transi-
tioned from RUNNING to
FAIL_CONTAINER_CLEANUP

kernel time sync disabled 12:56 kernel time sync | kernel time sync disabled <*> kernel time sync disabled <*>
<ESE>

kernel time sync enabled 09:45 kernel time sync | kernel time sync enabled <*> kernel time sync enabled <*>
<S>

Internal validity: Internal validity risks are those factors
that have the potential to influence our outcomes. It is possible
that mistakes happened during the implementation and testing
of ULP, despite our best efforts. In order to reduce this
hazard, we tested the tool on a large number of log files and
manually reviewed its results on a limited number of samples.
In addition, we make the tool and data accessible on Zenodo
so that researchers may run the tool and check the results.
Finally, in order to determine the correctness of ULP, we had
to look at the disparities between the findings provided by
ULP and the results acquired by the ground truth. This was
accomplished in part via scripts and in part through manual
checks. All efforts were made to minimize the possibility of
mistakes.

Reliability Validity:. The potential of reproducing this
research is referred to as reliability validity. The study’s
evaluation, replication, and reproducibility are made easier by
the use of an open-source program. ULP and all the data used
in this paper are available online on Zenodo’.

Conclusion validity. The accuracy of the collected findings
corresponds to the validity risks associated with the conclu-
sion. We used ULP to analyze ten log files that have been
commonly used in comparable investigations in the past. The
accuracy and efficiency experiments were thoroughly reviewed
to verify that the findings were appropriately interpreted, and
we made every effort to do so. The tool and data that were
used in every phase of this study are made accessible online
to enable the evaluation and replication of our findings.

External validity: The generalizability of the findings is
what is meant by external validity. We tested our findings on
a total of ten log files from a variety of different software
systems. Ten log files from the LogPai benchmark were used
to evaluate ULP’s performance. As a result, we cannot say
with certainty that ULP’s accuracy would be the same if it
were applied to other datasets. However, since these datasets
span a wide range of software systems from a variety of areas,

Shttp://zenodo.org/record/6425919

they serve as a useful testbed for log parsing and analysis
techniques. We do not claim that our findings can be applied
to all available log files, particularly industrial and proprietary
logs, to which we did not have access when conducting this
research. We are currently working with industrial partners to
apply ULP to their logs.

VII. CONCLUSION

We presented ULP, a powerful log parsing approach and
tool. ULP differs from other tools in its design. It uses a
novel way to distinguish between static and dynamic tokens
of log events by applying string matching similarity to create
groups of similar log events, and local frequency analysis
to instances of the same group to distinguish between static
and dynamic tokens. By doing so, ULP is capable with
high accuracy to extract log templates that can be used to
recognize and structure log events. Our approach confirms that
is indeed possible to create an effective and efficient universal
log parsers, which eliminates the need to develop specific
parsers for various types of log files. Moreover, ULP is readily
usable by practitioners to support various maintenance tasks
that rely on log analytics. ULP is more accurate in parsing a
representative set of 10 log files of the LogPai project than
four leading open source log parsers. ULP is very efficient
too. It took 3 minutes to parse up to 4 million Log events.
Future work should build on this work by focusing on the
following aspects (a) apply ULP to more logs, especially those
from industrial systems, (b) improve ULP by adding more
regular expressions to identify other trivial dynamic variables
such as domain-specific variables, and (c) conduct a time
algorithm complexity analysis to determine with precision the
best, worse, and expected running time of ULP, (d) improve
the efficiency of the tool when applied to log files with a large
number of templates, with high variability, and (e) adapt ULP
to online parsing, which eliminates the need of a training set.
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