
Exploratory Testing

Cem Kaner, J.D., Ph.D.

Keynote at
QAI

November 17, 2006

Copyright (c) Cem Kaner 2006. This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-sa/2.0/ or send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.
These notes are partially based on research that was supported by NSF Grant EIA-0113539 ITR/SY+PE: "Improving the
Education of Software Testers." Any opinions, findings and conclusions or recommendations expressed in this material are
those of the author and do not necessarily reflect the views of the National Science Foundation.

Session Blurb
I coined the phrase "exploratory testing" 23 years ago to describe
the practice of some of the best testers in Silicon Valley. The
fundamental distinction between scripted and exploratory testing
lies in the cognition of the tester. The script-driven tester
executes and interprets the results of tests that were previously
designed and documented. In contrast, the explorer treats reuse
of tests and test data as a tactical choice. The explorer is always
learning and always accountable for using new knowledge to
optimize the value of her work, changing focus and techniques
whenever this seems most useful. This approach has been a
magnet for criticism, some of it justified. It has also evolved
significantly. It's time to take stock of the opportunities and risks
of the approach and the ways it can be included more effectively
in the work of a more traditional IT test group.

Let’s start
with a demo

What does this tell us about scripted testing?

• People are finite capacity information processors
–We pay attention to some things

and therefore we do NOT pay attention to others
Even events that “should be” obvious will be
missed if we are attending to other things.

• Computers focus only on what they are programmed to
look at (inattentionally blind by design)

• A script specifies
–the test operations
–the expected results
–the comparisons the human or machine should make
–and thus, the bugs the tester should miss.

A program can fail in many ways
Based on notes from Doug Hoffman

System
under

test

Program state

Intended inputs

System state

Configuration and
system resources

From other cooperating
processes, clients or servers

Monitored outputs

Program state, including
uninspected outputs

System state

Impacts on connected
devices / system resources

To other cooperating
processes, clients or servers

Time Sequence in Scripted Testing
• Design the test early
• Execute it many times later
• Look for the same things each time

The earlier you design the tests, the less you
understand the program and its risk profile
And thus, the less well you understand what to
look at
The scripted approach means that the test stays
the same, even if the risk profile changes.

The Cognitive Sequence in Scripted Testing
• The smart test designer

–who rarely runs the tests
• designs the tests for the cheap tester

–who does what the designer says and looks for what
the designer says to look for

–time and time again
–independently of the risk profile.

• Who is in a better position to spot changes in risk or to
notice new variables to look at?

Manufacturing QC
• Fixed design
• Well understood risks
• The same set of errors appear on a statistically

understood basis
• Test for the same things on each instance of the product
• Scripting makes a lot of sense

Design QC
• The design is rich and not yet trusted
• A fault affects every copy of the product
• The challenge is to find new design errors, not to look

over and over and over again for the same design error

• Scripting is probably an industry worst practice for
design QC

• Software testing is assessment of a design, not of the
quality of manufacture of the copy

What we need for design…
• Is a constantly evolving set of tests
• That exercise the software in new ways (new

combinations of features and data)
• So that we get broader coverage
• Of the infinite space of possibilities

For that
we do

exploratory testing

Software testing
• is an empirical
• technical
• investigation
• conducted to provide stakeholders
• with information
• about the quality
• of the product or service under test

Quality
• is value
• to some person

—Gerald Weinberg

• Note the inherent subjectivity
• Note that different stakeholders will perceive the same

product as having different levels of quality

• Testers look for different things
–for different stakeholders. . . .

Exploratory software testing
–is a style of software testing
–that emphasizes the personal freedom and

responsibility
–of the individual tester
–to continually optimize the value of her work
–by treating

test-related learning,
test design,
test execution, and
test result interpretation

–as mutually supportive activities
–that run in parallel throughout the project.

www.testingeducation.org/BBST

www.testingeducation.org/BBST

Contexts Vary Across Projects
Testers must learn, for each new product:

– What are the goals and quality criteria for the project
– What skills and resources are available to the project
– What is in the product
– How it could fail
– What the consequences of potential failures could be
– Who might care about which consequence of what failure
– How to trigger a fault that generates the failure we're seeking
– How to recognize failure
– How to decide what result variables to pay attention to
– How to decide what other result variables to pay attention to in the event

of intermittent failure
– How to troubleshoot and simplify a failure, so as to better

(a) motivate a stakeholder who might advocate for a fix
(b) enable a fixer to identify and stomp the bug more quickly

– How to expose, and who to expose to, undelivered benefits, unsatisfied
implications, traps, and missed opportunities.

It's kind of like CSIIt's kind of like CSI
MANY tools, procedures, MANY tools, procedures,
sources of evidence.sources of evidence.

• Tools and procedures don't define
an investigation or its goals.

• There is too much evidence to test,
tools are often expensive, so
investigators must exercise
judgment.

• The investigator must pick what to
study, and how, in order to reveal
the most needed information.

Imagine …
• Imagine crime scene investigators

–(real investigators of real crime scenes)
–following a script.

• How effective do you think they would be?

Exploratory Testing After 23 Years

Areas of ongoing concernAreas of progress

Areas of controversyAreas of agreement

Areas of Agreement*
• Definitions
• Everyone does ET to some degree
• ET is an approach, not a technique
• ET is the response (the antithesis) to scripting

–But a piece of work can be a blend, to some degree
exploratory and to some degree scripted

* Agreement among the people who agree with me (many
of whom are sources of my ideas). This is a subset of
the population of ET-thinkers who I respect, and a
smaller subset of the pool of testers who feel qualified
to write about ET. (YMMV)

Areas of Controversy
• ET is not quicktesting

–A quicktest (or an “attack”) is a test technique that
starts from a theory of error (how the program could
be broken) and generates tests that are optimized for
errors of that type.

Example: Boundary analysis (domain testing) is
optimized for misclassification errors (IF A<5
miscoded as IF A<=5)

–Quicktests (most) don’t require much knowledge of
the application under test. They are “ready” right
away.

–Quicktesting is more like scripted testing or more
like ET depending on the mindset of the tester.

www.testingeducation.org/BBST

Areas of Controversy

• ET is not quicktesting

• ET is not only functional testing:
– When programmers define testing, they often define it as

functional testing
Agile ™ system testing is fashionably focused around stories
written by customers, not a good vehicle for parafunctional
attributes
Parafunctional work is dismissed as peripheral (e.g. Marick’s
assertion that it should be done by specialists who are not part of
the long term team) (e.g. Beizer’s “Usability is not testing”)

– If quality is value to the stakeholder
and if value is driven by usability, security, performance,
aesthetics, trainability (etc.)
then testers should investigate these aspects of the product.

Areas of Controversy
• ET is not quicktesting
• ET is not only functional testing

• ET can involve tools of any kind and can be as computer-
assisted as anything else we would call “automated”
– Along with

traditional “test automation” tools,
– we see emerging tool support for ET such as

Test Explorer
BBTest Assistant

– and better thought support tools
Like mind manager and inspiration
And qualitative analysis tools like Atlas.ti

Phone System: The Telenova Stack
Failure

Telenova Station Set 1. Integrated voice and data.
108 voice features, 110 data features. 1984.

The Telenova Stack Failure

Context-sensitive
display

10-deep hold queue
10-deep wait queue

The Telenova Stack Failure
A simplified state diagram showing the bug

Caller
hung up

Idle

Connected

On Hold

Ringing

You
hung up

The bug that triggered the simulation:
• Beta customer (a stock broker) reported random failures
• Could be frequent at peak times
• An individual phone would crash and reboot, with other phones crashing while the

first was rebooting
• On a particularly busy day, service was disrupted all (East Coast) afternoon
• We were mystified:
• All individual functions worked
• We had tested all lines and branches.
• Ultimately, we found the bug in the hold queue
• Up to 10 calls on hold, each adds record to the stack
• Initially, the system checked stack whenever call was added or removed, but this took

too much system time. So we dropped the checks and added these
– Stack has room for 20 calls (just in case)
– Stack reset (forced to zero) when we knew it should be empty

• The error handling made it almost impossible for us to detect the problem in the lab.
Because we couldn’t put more than 10 calls on the stack (unless we knew the magic
error), we couldn’t get to 21 calls to cause the stack overflow.

The magic error

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

Telenova Stack Failure

Having found and fixed
the hold-stack bug,
should we assume

that we’ve taken care of the problem
or that if there is one long-sequence bug,

there will be more?

Hmmm…
If you kill a cockroach in your kitchen,

do you assume
you’ve killed the last bug?

Or do you call the exterminator?

Simulator with Probes
• Telenova (*) created a simulator

– generated long chains of random events, emulating input to the
system’s 100 phones

– could be biased, to generate more holds, more forwards, more
conferences, etc.

• Programmers added probes (non-crashing asserts that sent alerts to a
printed log) selectively
– can’t probe everything b/c of timing impact

• After each run, programmers and testers tried to replicate failures, fix
anything that triggered a message. After several runs, the logs ran
almost clean.

• At that point, shift focus to next group of features.
• Exposed lots of bugs
• This is a classic example of exploratory testing.
• (*) By the time this was implemented, I had joined Electronic Arts.

Areas of Controversy
• ET is not quicktesting
• ET is not only functional testing
• ET can involve tools of any kind and can be as computer-

assisted as anything else we would call “automated”

• ET is not focused primarily around test execution
–I helped create this confusion by initially talking about

ET as a test technique.

Controversy: ET as a Technique
• In the 1980’s and early 1990’s, I distinguished between

–The evolutionary approach to software testing
–The exploratory testing technique(s), such as:

Guerilla raids
Taxonomy-based testing and auditing
Familiarization testing (e.g. user manual
conformance tests)
Scenario tests

Controversy: ET as a Technique
• 1999 Los Altos Workshop on Software Testing #7 on

Exploratory Testing
– James Tierney presents observations on MS “supertesters”

indicating their strength is heavily correlated with social
interactions in the development group (they learn from the
team and translate the learning into tests)

– Bob Johnson and I present a long list of “styles of
exploration” (a categorization of what James Bach & I now
call “quicktests,” and James Whittaker calls “attacks”)

– James Bach shows off his heuristic test strategy model,
various other models and heuristics relied on by testers

– Elisabeth Hendrickson, Harry Robinson, and Melora
Svoboda also give presentations that discuss the use of models
to drive test design in the moment

Controversy: How can ET be a Technique?
• We were cataloging dozens of quicktests (essentially techniques)

used by explorers. Is ET a family of techniques?
• At end of LAWST 7, Gelperin concludes that he doesn’t

understand what is unique about “exploratory” testing. Our
presentations all described approaches to design and execution of
tests that he considered normal testing. What was the
difference?

• He had a point:
– Can you do domain testing in an exploratory way?

Of course
– Specification-based testing?

Sure
– Stress testing? Scenario testing? Model-based testing?

Yes, yes, yes
– Is there any test technique that you cannot do in an

exploratory way?

Controversy: ET is a Way of Testing
• WHET #1 and #2 – James Bach convinced me that the activities

we undertake to learn about the product (in order to test it) are
exploratory too.
– Of course they are
– But this becomes the death knell for the idea of ET as a

technique
– ET is a way of testing

We learn about the product in its market and technological
space (and keep learning until the end of the project)
We take advantage of what we learn to design better tests
and interpret results more sagely
We run the tests, shifting our focus as we learn more, and
learn from the results.

Areas of Controversy
• ET is not quicktesting
• ET is not only functional testing
• ET can involve tools of any kind and can be as

computer-assisted as anything else we would call
“automated”

• ET is not focused primarily around test execution
• ET can involve very complex tests that require

significant preparation
–Scenario testing is the classic example
–To the extent that scenarios help us understand the

design (and its value), we learn most of what we’ll
learn in the development and first execution. Why
keep them?

Areas of Progress
•We know a lot more about quicktests

–Well documented examples from Whittaker’s How
to Break… series and Hendrickson’s and Bach’s
courses

Areas of Progress
• We know a lot more about quicktests

•We have a better understanding of the
oracle problem and oracle heuristics

Areas of Progress
• We know a lot more about quicktests
• We have a better understanding of the oracle problem

and oracle heuristics

•We have growing understanding of ET in
terms of theories of learning and cognition
–Including benefits of paired testing

Areas of Progress
• We know a lot more about quicktests
• We have a better understanding of the oracle problem and

oracle heuristics
• We have growing understanding of ET in terms of theories

of learning and cognition

•We have several guiding models
–Failure mode & effects analysis applied to bug catalogs
–Bach / Bach / Kelly’s activities model
–Satisfice heuristic test strategy model
–State models
–Other ET-supporting models (see Hendrickson, Bach)

Areas of Ongoing Concern
• We are still early in our wrestling with modeling and

implicit models
–A model is

A simplified representation created to make
something easier to understand, manipulate or
predict some aspects of the modeled object or
system.
Expression of something we don’t understand in
terms of something we (think we) understand.

Areas of Ongoing Concern
• We are still early in our wrestling with modeling and

implicit models
• Testing is a more skilled and cognitively challenging

area of work than popular myths expect
• Testing is more fundamentally multidisciplinary than

popular myths expect

–For both of these, see my presentations on Software
Testing as a Social Science, e.g.
http://www.kaner.com/pdfs/KanerSocialScienceDal.pdf

Areas of Ongoing Concern
• We are still early in our wrestling with modeling and implicit models
• Testing is a more skilled and cognitively challenging area of work

than popular myths expect
• Testing is more fundamentally multidisciplinary than popular myths

expect

• We are just learning how to track and report status
– Session based testing
– Workflow breakdowns
– Dashboards

Construct validity is still an unknown concept in Computer
Science

Areas of Ongoing Concern
• We are still early in our wrestling with modeling and

implicit models
• Testing is a more skilled and cognitively challenging

area of work than popular myths expect
• Testing is more fundamentally multidisciplinary than

popular myths expect
• We are just learning how to track and report status

•We are just learning how to assess
individual tester performance

Areas of Ongoing Concern
• We are still early in our wrestling with modeling and implicit

models
• Testing is a more skilled and cognitively challenging area of

work than popular myths expect
• Testing is more fundamentally multidisciplinary than popular

myths expect
• We are just learning how to track and report status
• We are just learning how to assess individual tester

performance

• We don’t yet have a good standard tool suite
– Tools guide thinking
– Hendrickson, Bach, others have made lots of suggestions
– Tinkham is working on this for his dissertation

Closing Notes
• If you want to attack any approach to testing as

unskilled, attack scripted testing
• If you want to hammer any testing approach on coverage,

look at the fools who think they have tested a spec or
requirements document when they have one test case per
spec item, or code with one test per statement / branch /
basis path.

• Testing is a skilled, fundamentally multidisciplinary area
of work.

• Exploratory testing brings to the fore the need to adapt to
the changing project with the information available.

• ET is fundamentally agile, but maybe not very Agile ™.

