
P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective
Niclas Hedam

IT University of Copenhagen

Denmark

nhed@itu.dk

ABSTRACT
eBPF allows software developers to write programs

that are executed in the kernel without requiring re-

compilation and system restart. These programs can

collect critical performance metrics when a kernel func-

tion is invoked. In this paper, we will describe and dis-

cuss the architecture of eBPF using libbpf as well as

the core components of it. We will look at key differ-

ences between eBPF programs and typical user-space

C programs. Lastly, we will look into some real-world

use-cases of eBPF. We will, however, not discuss perfor-

mance numbers or formal proofs. This paper is merely

a summary of countless hours of reading through eBPF

textbooks, blog posts, eBPF samples and kernel code.

This work is licensed under a Creative Commons “Attribution 4.0 International”

license.

1 ACKNOWLEDGEMENTS
I would like to extend thanks to Quentin Monnet, who

have contributed tremendously in verifying correctness

of the paper as well providing valuable feedback.

2 INTRODUCTION
Berkeley Packet Filter or BPF emerged as an efficient

network packet filter in 1992 [4, 13]. A network packet

filter is a network security mechanism for controlling

what flows from and to a network by inspecting pack-

ets as they pass through the filter. BPF was described

by the authors as 20 times faster than the state of the

art. BPF differed from previous systems by running

programs in a virtual machine built for register-based

CPUs and having per-application buffers that did not

require copying all information to make a decision [4].

BPF became state of the art and was adopted as the

technology of choice for network packet filtering.

Alexei Starovoitov introduced eBPF in 2014 [17, 4] as

a redesign of BPF for modern hardware. The eBPF VM

is faster as it resembles the contemporary processors

more and thus allows eBPF instructions to be mapped

closely to the hardware instruction set architecture (ISA)
[8]. In Alexei’s commit from 2014 [17], eBPF was ex-

posed to user-space and soon after, eBPF stopped being

limited to the networking stack and over time, it became

muchmore broad and generic. eBPFmakes it possible to

update the behaviour of the kernel without the need to

recompile it and to reboot the system, while offering a

simpler and safer interface than module programming.

eBPF is built with a static verifier that ensures that

a program cannot cause a kernel crash and that it will

always terminate. After the program is compiled, the

eBPF verifier checks that the program is safe to run [4,

5].

Before the kernel can run eBPF programs, it must

know where to attach it. The execution point is defined

by the eBPF program types, which will be described

later in this paper. The eBPF architecture also contains

maps, which are bidirectional data structures allowing

eBPF programs to asynchronously share data with user-

space [4].

In this paperwewill look at eBPFmainly from the per-

spective of libbpf. While there exist other approaches,

libbpf is the recommended way to go with C programs.

We will first look into the high-level architecture of

eBPF and libbpf and then shift towards some practical

examples and practical use cases.

3 ARCHITECTURE
Listing 1 is an example of an eBPF program that at-

taches to the kill system call. It can be used for security

and auditing purposes by logging and documenting

when processes are not gracefully terminated. Since

the eBPF program is running in the kernel, there is no

way of preventing this logging without having esca-

lated privileges on the system.

The SEC macro is used to tell the compiler to place

the bytecode in a specified ELF section. The section

name is later picked up by the loader, which then de-

duces the attach type. The section names are not a eBPF

1

https://orcid.org/0000-0001-5847-8419
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

Niclas Hedam

1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3

4 struct syscalls_enter_kill_args {
5 long long pad;
6

7 long syscall_nr;
8 long pid;
9 long sig;
10 };
11

12 SEC("tracepoint/syscalls/sys_enter_kill")
13 int kill_example(struct

syscalls_enter_kill_args *ctx) {
14

15 if(ctx ->sig != 9) return 0;
16

17 char fmt[] = "PID %u is being killed !\n";
18 bpf_trace_printk(fmt , sizeof(fmt), ctx ->

pid , sizeof(ctx ->pid));
19

20 return 0;
21 }
22

23 char _license [] SEC("license") = "GPL";

Listing 1: A kill eBPF example written in C. This
example is of a tracepoint eBPF program (see
section 4.2.1).

convention, but a convention of the program loading

the eBPF program. In libbpf, other than the reserved

keywords such as maps, the probes are first defined

by the type and then the hook. In listing 1 for exam-

ple, the program type is tracepoint and the hook is

syscalls/sys_enter_kill.
The SECmacro is defined in the bpf/bpf_helpers.h

file in libbpf. When compiling the file, the SEC macro

is replaced by an __attribute__ statement, which is a

mechanism in GNU C to attach characteristics to func-

tion declarations [9].

We use bpf_trace_printk, which is defined in the

kernel, to print out trace information to the common

trace pipe
1
. This function offer printf -like functionality,

but in kernel-space. We will describe probe types in

more details in section 4.

All eBPF programs takes a context as parameter. For

tracing programs, the context contains information

about the information that the kernel is currently pro-

cessing including registers or function parameters [4].

1/sys/kernel/debug/tracing/trace_pipe

The context depends on the type of eBPF program as

well as the location of the probe. In the listing before, the

context is a syscalls_enter_kill_args struct, which
follows the format published by the kernel

2
. The first

8 bytes are unused and should be ignored. We will de-

scribe the context parameter in more details in section

4.

In the bottom of listing 1, the license of the eBPF pro-

gram is declared. Since the kernel is licensed under GPL,

some eBPF programs are required to be GPL-compatible.

Other programs, like networking programs, do not have

to be GPL-compatible and may be under proprietary

licenses. Whether or not an eBPF program must be

GPL-compatible depends on, among other things, the

program type and the used helpers.

3.1 Scope
eBPF programs cannot call arbitrary kernel functions

[5]. This is a design choice, as it would bind the eBPF

program to specific kernel versions and thus complicate

compatibility. eBPF programs can, however, invoke a

set of helper functions offered by the kernel.

Examples of eBPF helper functions include

• Random number generation.

• Access to current time.

• Access to eBPF maps.

• Get process/cgroup context.

• Alter network packets.

eBPF programs can in principle invoke external li-

brary functions if they adhere to the requirements of

the verifier, which are described in section 6, and if the

compiler is able to inline them in the code.

3.2 Compilation
The rest of this paper assumes that you have a working
eBPF environment to run the examples. If you have not
compiled or run an eBPF program on your system before,
read appendix A.
eBPF is a low-level language, an ISA, that can be

compiled from high-level languages such as Rust and C

[4, 7]. In this paper, we will focus on C and compilation

using clang and llc. The choice of clang over GCC is

rooted in the maturity of eBPF in the two compilers.

Clang have had a longer history with eBPF and it is

2
Published in /sys/kernel/debug/tracing/events/syscalls/
sys_enter_kill/format

2

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective

therefore regarded as the tool of reference in the eBPF

community.

When using the clang/LLVM toolchain, one can com-

pile in one or two steps. Compiling first to LLVM In-
termediate Representation (LLVM IR) and using llc in a

second step offers a finer control on the options passed

to llc. Compiling listing 1 in two steps can be done by

first calling the following command.

$ clang -target bpf -S -D __BPF_TRACING__
-I./libbpf/src/root/usr/include/ -Wall
-Werror -O2 -emit-llvm -c -g kill.c

We choose to compile with optimisation level 2 as this

is a necessary level for most eBPF programs. Without

it, suboptimal code with heavy stacks may be gener-

ated and some invoked functions may be referenced

incorrectly. We compile with the -S, -c and -emit-llvm
arguments to emit an LLVM IR file instead of a typical

object file. We set the target architecture to BPF to avoid

compiling with the native system architecture. Doing

so may produce invalid code or include invalid ELF sec-

tions. We furthermore compile with the -D argument,

which enables some functionality required by eBPF,

such as ASM_GOTO support. -I includes the libbpf li-
brary and the -Wall and -Werror arguments will stop

compilation if the eBPF program has any warnings. The

-g argument will emit source-level debug information,

which for example enables bpftool to read the contents

of eBPF maps in a structured manner.

$ llc -march=bpf -filetype=obj -o kern.o
kern.ll

When the IR file has been emitted, we convert it to

an eBPF object file using llc. The arguments here are

quite self-explanatory.

$ gcc -I./libbpf/src/root/usr/include/
-L./libbpf/src/ -o ebpf-kill-example
user.c \
-Wl ,-rpath=./libbpf/src/ -lbpf -lelf

Since the loader will run in user-space, we can com-

pile this with gcc with typical arguments. We include

the libbpf library as before, and we tell the linker where

to look for the library at runtime using the -Wl,-rpath
argument.

When loading eBPF code, the Just-In-Time step trans-

lates the generic eBPF byte-code instructions into in-

structions specific for the machine [5]. This optimises

the execution speed of the program and makes it run

as efficiently as natively compiled Linux code and code

loaded as modules. The generic eBPF byte-code is be-

ing translated after the program is verified to avoid

any overhead when executing the program [4]. The re-

sulting machine-code is then placed at the pre-defined

location next to kernel machine-code.

3.3 Loading
At a low-level, loading eBPF programs is done through

the bpf() system call. Various languages have libraries

wrapping around this call. For example, libbpf offers an

interface in C to work with eBPF. It offers functions to

build a struct bpf_object by reading the bytecode of a

program and the associated metadata (map information,

BTF information, etc.) from an ELF object file, and to

later reuse this object to manipulate, load, and attach

the eBPF programs and its related components.

In practise, loading eBPF programs can be done by in-

voking the bpf_object__open_file and bpf_object_
_load libbpf function with the name of the file. After

a successful load, the program can be attached with

the bpf_program__attach function. This takes a bpf_
program as parameter, which can be retrieved using the

bpf_object__find_program_by_name helper. The by
name refers to the function name of the eBPF program.

One can also find a program by title, which refers to

the declared ELF section described in section 3. Further-

more, the bpf syscall can be used to perform commands

on BPF maps or programs.

Listing 2 shows an example of a loader program, that

will load the program seen in listing 1. The while loop

will keep the eBPF program loaded while we listen to

the trace pipe, which is located at /sys/kernel/debug/
tracing/trace_pipe.
Put very simply, eBPF programs are by default un-

loaded when the user-space program that loaded the

eBPF program terminates [18].

4 PROGRAM TYPES
In this section, we will describe a subset of the eBPF

programs types. The full list of program types can be

examined in appendix B.

4.1 Networking
Networking eBPF programs are used to read, modify,

retransmit, redirect or drop network packets. The ac-

tions that can be performed on the packet (cloning,

3

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

Niclas Hedam

1 #include <bpf/bpf.h>
2 #include <bpf/libbpf.h>
3 #include <stdio.h>
4 #include <unistd.h>
5

6 int main(int argc , char **argv) {
7 char path [128];
8 sprintf(path , "kill.o");
9

10 struct bpf_object *obj;
11 struct bpf_link *link = NULL;
12

13 int err = -1;
14

15 // Open eBPF object with the path
16 obj = bpf_object__open_file(path , NULL);
17 if (libbpf_get_error(obj)) {
18 fprintf(stderr , "open BPF obj failed\n"

);
19 return err;
20 }
21

22 // Find the program within the obj file
23 struct bpf_program *prog =
24 bpf_object__find_program_by_name(obj ,

"kill_example");
25 if (!prog) {
26 fprintf(stderr , "program not found\n");
27 goto cleanup;
28 }
29

30 // Load the eBPF object into the kernel
31 if (bpf_object__load(obj)) {
32 fprintf(stderr , "loading failed\n");
33 goto cleanup;
34 }
35

36 // Attach the program to the tracepoint
37 link = bpf_program__attach(prog);
38 if (libbpf_get_error(link)) {
39 fprintf(stderr , "attach failed\n");
40 link = NULL;
41 goto cleanup;
42 }
43

44 err = 0;
45

46 while (1) sleep (1);
47

48 cleanup:
49 bpf_link__destroy(link);
50 bpf_object__close(obj);
51

52 return err;
53 }

Listing 2: An example of an eBPF loader program.

retransmission, redirection, ...) and the amount of data

accessible from the context vary depending on the pro-

gram type.

4.1.1 Socket Filter Programs. The eBPF Socket Filter

type was the first type to be added to the kernel [4]. This

type enables an eBPF program to attach to sockets and

read packets going through the socket. It also allows

truncation and dropping of packets.

4.1.2 XDP Programs. The eBPF XDP type enables eBPF
programs to inspect incoming network packets early

in the network stack [4]. This allows the the eBPF pro-

gram to drop the packet, before the kernel has used a

significant amount of time on it. Furthermore, contrary

to DPDK, eBPF programs work with the kernel and can

benefit from all it implements. It is also possible for

some network drivers to offload XDP eBPF programs

directly to network interface cards (NIC).
XDP programs can return XDP_PASS to allow it to

continue to the next subsystem, XDP_DROP to drop

it or XDP_TX to forward it back to the NIC that orig-

inally received it. Lastly, an XDP program can return

XDP_REDIRECT to send the packet through a different

NIC and possibly bypass the normal network stack.

XDP is very well suited for efficient low-level filtering

such as a DDoS firewall.

4.2 Tracing
Tracing eBPF programs are used to debug or trace per-

formance of either the kernel or user-space applica-

tions.

4.2.1 Tracepoint Programs. The eBPF Tracepoint type
enables eBPF programs to attach to the tracepoint han-

dler provided by the kernel [4]. Tracepoints are static

marks in the kernel that can be used for tracing and

debugging purposes. All tracepoints are defined in the

/sys/kernel/debug/tracing/events directory.
When talking about tracepoints, it is important to

remember that these are defined as certain marks or

events in the kernel. A tracepoint can therefore not nec-

essarily be reduced to a specific location or function in

the kernel, but it tends to be much more stable between

different kernel versions.

The ’kill’ example from listing 1 is an example of a

tracepoint program.

4

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective

4.2.2 Raw Tracepoint Programs. The eBPF Raw Tra-

cepoint type works like the Tracepoint type, but can
access the tracepoint more directly [4]. For example,

the context parameter is no longer a struct with the

values, but instead a struct containing an array with

pointers to the arguments. This may yield more detailed

information about the kernel’s current task and comes

with a performance increase, as the kernel can skip

argument processing.

4.2.3 Kprobe Programs. The eBPF Kprobe type enables
eBPF programs to dynamically attach to any function in

the kernel [4]. Kprobe programs differ from tracepoints

in the section header and the context parameter. Kprobe

programs are used for tracing in the situations where

no suitable tracepoint exist. The important difference

between kprobes and tracepoints is that tracepoints are

statically defined in the kernel while kprobes can be

placed in any named function in the kernel. Due to this,

kprobes are also more likely to break between different

kernel versions, because the functions or structs may

change.

Since tracepoints are statically defined, it is much

easier to extract contextual information. In listing 1

for example, we can access information about the the

syscall from a struct that is passed to the eBPF program.

Since Kprobe programs can hook into any kernel func-

tion, the context parameter is different from tracepoints.

Instead, the parameter is a structpt_regs. This struct
is defined in asm/ptrace.h and provides access to all

CPU registers.

A Kprobe attaching to the sys_exec kernel func-

tion should set the section header (see section 3) to

either kprobe/sys_exec or kretprobe/sys_exec. Set-
ting the probe type to kprobe invokes the program as the

first instruction of sys_exec, while setting the program
to kretprobe invokes the program as the last instruction

of sys_exec.

4.2.4 Perf Event Programs. The eBPF Perf Event type
allows eBPF programs to attach to the kernels internal

Perf profiler [4]. Perf emits performance data events

for hardware and software. Low level examples of per-

formance data are CPU cycles and CPU cache misses.

Examples of more high level performance data are the

number of context switches and page faults.

1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3

4 struct {
5 __uint(type , BPF_MAP_TYPE_ARRAY);
6 __type(key , int);
7 __type(value , int);
8 __uint(max_entries , 42);
9 } my_map SEC(".maps");

Listing 3: An example of an eBPF map definition.

5 EBPF MAPS
eBPF maps offer a two-way data structure for transfer-

ring data in and out of kernel-space. Maps are the only

way for an eBPF program to communicate with other

eBPF program invocations and/or user-space. In the

context of tracing, maps are often used to register key

statistics about the current invocation. For example a

networking eBPF programmay store information about

network latency or increment an IP address counter to

keep track of popularity of remote hosts. The user-space

program can at any point in time look into the maps

and inspect their current state.

Maps are created by invoking the bpf syscall with

the BPF_MAP_CREATE argument [4]. One can also make

use the SEC attribute discussed earlier to automatically

create it as shown in listing 3.

It is important to remember that eBPF maps are not

built with functionality guaranteeing integrity, which

means that the developer should take extra care in en-

suring that data is not overwritten by accident. Further-

more, data is shared across eBPF program invocations.

Lastly, all privileged user-space programs can access

eBPF maps, which allows usage of debug tools such as

bpftool.

An interesting property of eBPF maps is the in-kernel

aggregation. If you, for example, want to compute the

minimum or maximum value, you can determine this

value in the eBPF program and thus not stream all val-

ues to user-space. This significantly decreases the over-

head compared to systems that transfer all samples to

user-space for processing.

5.1 Definition
Listing 3 shows an example of a simple eBPF map of

the array-type. There exist many different map-types

and the eBPF developer should consider the character-

istics of each type. For example, the array-based map

5

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

Niclas Hedam

1 #include <bpf/bpf.h>
2 #include <bpf/libbpf.h>
3

4 /* create or update if exists */
5 #define BPF_ANY 0
6

7 /* create , but do no update */
8 #define BPF_NOEXIST 1
9

10 /* do not create , but only update */
11 #define BPF_EXIST 2
12

13 int bpf_map_lookup_elem(
14 int fd, void *key , void *value
15);
16

17 int bpf_map_update_elem(
18 int fd, void *key ,
19 void *value , __u64 flags
20);
21

22 int bpf_map_delete_elem(
23 int fd, void *key
24);

Listing 4: A list of the functions used to interact
with eBPF maps in user-space.

has a fixed key-size of 4 bytes and the whole array is

preallocated in memory, while a hash-based map can

have any key-size and is not preallocated in memory

[4]. However, an array-based map is faster than a hash-

based map, since lookups do not require computing

the hash of the entry. Furthermore, there exist some

more complex map-types that can cover more specific

use-cases. For example, one can initialise a map that is

per-CPU or based on LRU-principles. A full list of eBPF

map types are available in appendix C.

5.2 Usage
The user-space program can interact with maps by

using the three methods shown in listing 4. These fol-

low the typical interface for a map structure with the

exception of the flag argument of update. Listing 4 also

shows the update flags, which denotes whether the map

should create or update, only create or only update.

The fd argument should be the file descriptor of the

map. The file descriptor can be retrieved by first call-

ing bpf_object__find_map_by_name with the bpf_
object from the loading step and the map name. This

1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3

4 void *bpf_map_lookup_elem(
5 void *map , void *key
6);
7

8 int bpf_map_update_elem(
9 void *map , void *key , void *value ,
10 unsigned long long flags
11);
12

13 int bpf_map_delete_elem(
14 void *map , void *key
15);

Listing 5: A list of the functions used to interact
with eBPF maps in kernel-space.

will return a bpf_map, which can then be passed to

bpf_map__fd to retrieve the file descriptor.

The eBPF program can interact with the map by us-

ing the three methods shown in listing 5. This inter-

face differs from from the user-space interface by us-

ing pointers instead of file descriptors. For example,

bpf_map_lookup_elem returns a direct pointer to the

value in kernel memory-space, while the user-space

received a copy of the value.

The map argument should be a pointer to the struct

containing the map definition.

6 EBPF VERIFIER
As described in section 2, all eBPF programs are veri-

fied before being loaded into the kernel [4, 7, 5]. There

exist a set of rules to ensure the safety and stability

of the kernel. Common rules include type checking of

operations, a stack limit of 512 bytes, no signed division

and the absence of loops [7, 4, 5]. The verifier will also

ensure that the eBPF program is always terminating.

The guarantee of termination is given by converting

the program into a direct acyclic graph (DAG). The

verifier can then check, using depth first search (DFS),

that the program always finishes and does not include

any dangerous paths [4]. Loops may be used if they are

unrolled doing compilation or guaranteed to terminate.

While the eBPF verifier has been under scrutiny to

guarantee its reliability, some critical security vulnera-

bilities have been found in the past. For example, CVE-

2017-16995 describes a way to read and write kernel

memory and bypass the eBPF verifier [14, 4].

6

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective

6.1 Hardening
When an eBPF program passes verification it is run

though a hardening step [5]. In this step, the kernel

memory holding the eBPF program is made read-only

to protect from malicious manipulation. The kernel will

then crash, when an adversary or bug tries to invoke

the eBPF program in an untimely manner. Constants

may also be blinded such that code in constants cannot

be executed. Blinded means that the memory address

of the constant is randomised such that it is harder

to guess. This ensures that an attacker cannot inject

arbitrary code into the constant and execute it.

The verifier will also make sure that the eBPF pro-

gram does not leak kernel-space memory to user-space,

for example by reading any chunk of memory and for-

ward it via eBPF maps to user-space. An example of a

rule to prevent this; A register or a stack portion must

always have been initialised before an eBPF program

can read them

6.2 Risky Operations
One thing that differs significantly between typical user-

space C programs and eBPF programs, is the safety

guarantees of operations. When writing a user-space C

program, invalid memory accesses are caught as seg-

mentation faults. In eBPF programs, invalid memory

accesses must not happen in any circumstances.

Programs that do not have the necessary safeguards

will not be accepted by the verifier. To follow a pointer,

for example, the program must use the bpf_probe_
read function. This function will verify that the pointer

is valid and copy the desired memory space before con-

tinuing the program execution.

7 PRACTICAL DIFFERENCES
In the previous sections, we have gone trough high-

level descriptions of the architecture of eBPF and the

differences between eBPF and typical user-space C pro-

grams. In this section, we will see a few select examples

of code that works in a normal environment, but will

not pass verification in the context of eBPF.

Listing 6 shows an example of an eBPF program that

will hook into an arbitrary kprobe. The program will

read the first parameter of the hooked function using

the rdi entry of the context, as the first parameter is

stored in the rdi register.

1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3 #include <asm/ptrace.h>
4

5 struct my_struct {
6 unsigned int foo;
7 };
8

9 SEC("kprobe /...")
10 int bpf_prog(struct pt_regs *ctx) {
11

12 struct my_struct *my_struct =
13 (void *) ctx ->rdi;
14

15 char fmt[] = "Foo contains %u\n";
16

17 bpf_trace_printk(
18 fmt ,
19 sizeof(fmt),
20 my_struct ->foo ,
21 sizeof(my_struct ->foo)
22);
23

24 return 0;
25 }
26

27 char _license [] SEC("license") = "GPL";

Listing 6: An example of a risky operation that
fails verification.

Bear in mind that the location of the first function

parameter and the structure of pt_regs may differ be-

tween systems. One can use the macros defined in

bpf_tracing.h in libbpf to increase portability by let-

ting the host select the appropriate registers. For exam-

ple, the PT_REGS_PARM1 will expand to ctx->rdi on the

author’s system.

Compiling listing 6 succeeds, but when loading the

program, youwill see output like listing 7. The first lines

(until line 18) shows what the eBPF verifier checked

before failing verification. The hexadecimal numbers

in the parenthesises denote the eBPF opcodes.

At line 19 the eBPF verifier informs that there was an

inv on R1, which translates to invalid memory access on

register 1, which on the author’s system is equivalent

to rdi.
Put more simply, the eBPF verifier fails verification,

since the deferencing of the foo member of my_struct
is risky. As described in section 6.2, this is due to the

risk of segmentation faults as the pointer may not be

valid. Section 6.2 also describes the solution to this

7

PREPRINT
-

May
26,

2023

Niclas Hedam

1 libbpf: load bpf program failed: Permission
denied

2 libbpf: -- BEGIN DUMP LOG ---
3 libbpf:
4 btf_vmlinux is malformed
5 Unrecognized arg#0 type PTR
6 ; (void *) ctx ->rdi;
7 0: (79) r1 = *(u64 *)(r1 +112)
8 1: (18) r2 = 0xa752520736e6961
9 ; char fmt[] = "Foo contains %u\n";
10 3: (7b) *(u64 *)(r10 -24) = r2
11 4: (18) r2 = 0x746e6f63206f6f46
12 6: (7b) *(u64 *)(r10 -32) = r2
13 7: (b7) r2 = 0
14 8: (73) *(u8 *)(r10 -16) = r2
15 last_idx 8 first_idx 0
16 regs=4 stack=0 before 7: (b7) r2 = 0
17 ; bpf_trace_printk(
18 9: (61) r3 = *(u32 *)(r1 +0)
19 R1 invalid mem access 'inv'
20 processed 8 insns (limit 1000000)

max_states_per_insn 0 total_states 0
peak_states 0 mark_read 0

21

22 libbpf: -- END LOG --

Listing 7: The result of compiling and loading
listing 6.

1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3 #include <asm/ptrace.h>
4

5 SEC("kprobe /...")
6 int bpf_prog(struct pt_regs *ctx) {
7

8 unsigned int tries = 0;
9

10 while (1){
11 if(bpf_get_prandom_u32 () > 0) break;
12 tries ++;
13 }
14

15 return 0;
16 }
17

18 char _license [] SEC("license") = "GPL";

Listing 8: An example of a dynamic program that
cannot be verified.

problem, which is to safely copy the memory space

using a dedicated helper before accessing it.

The eBPF program seen in listing 8 will continuously

sample random numbers. The program will terminate

1 libbpf: -- BEGIN DUMP LOG ---
2 libbpf:
3 btf_vmlinux is malformed
4 Unrecognized arg#0 type PTR
5 ; if(bpf_get_prandom_u32 () > 0) break;
6 0: (85) call bpf_get_prandom_u32 #7
7 1: (67) r0 <<= 32
8 2: (77) r0 >>= 32
9 ; if(bpf_get_prandom_u32 () > 0) break;
10 3: (15) if r0 == 0x0 goto pc -4
11

12 from 3 to 0: R0_w=inv0 R10=fp0
13 ; if(bpf_get_prandom_u32 () > 0) break;
14 0: (85) call bpf_get_prandom_u32 #7
15 1: (67) r0 <<= 32
16 2: (77) r0 >>= 32
17 ; if(bpf_get_prandom_u32 () > 0) break;
18 3: (15) if r0 == 0x0 goto pc -4
19

20 from 3 to 0: R0_w=inv0 R10=fp0
21 ; if(bpf_get_prandom_u32 () > 0) break;
22 0: (85) call bpf_get_prandom_u32 #7
23 infinite loop detected at insn 1
24 processed 14 insns (limit 1000000)

max_states_per_insn 0 total_states 1
peak_states 1 mark_read 1

25

26 libbpf: -- END LOG --

Listing 9: The result of compiling and loading
listing 8.

if and only if the sampled number is greater than zero.

Since the used random number generator is providing

unsigned 32-bit integers, the chance of the program

not terminating immediately is negligible. Actually, the

chance of the program not terminating in the first loop

iteration is
1

4294967296
or ≈ 0.00000002%.

Compiling listing 8 succeeds, but when loading the

program, you will see output like listing 9. The output

of the verifier states that an infinite loop was detected,

although there is virtually no chance of an infinite loop

occurring. This is, however, not a strong enough guar-

antee for loading the eBPF program.

Listing 10 shows an example of a simple program that

samples a single random number and adds 42.0 to it.

Floating point arithmetic is approximate by definition,

due to the sheer number of values that can be repre-

sented [3]. There exist a range of issues with floating

points including rounding issues, where numbers are

incorrectly rounded up or down due to an approxima-

tion.

8

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective

1 #include <linux/bpf.h>
2 #include <bpf/bpf_helpers.h>
3 #include <asm/ptrace.h>
4

5 SEC("kprobe /...")
6 int bpf_prog(struct pt_regs *ctx) {
7

8 float f = bpf_get_prandom_u32 () + 42.0;
9

10 char fmt[] = "Float is %f\n";
11

12 bpf_trace_printk(fmt , sizeof(fmt), f,
sizeof(f));

13

14 return 0;
15 }
16

17 char _license [] SEC("license") = "GPL";

Listing 10: An example of an eBPF program with
floating point arithmetic.

1 error: kill.c:31:13: in function
kill_example i32 (% struct.pt_regs *): A
call to built -in function '
__floatunsidf ' is not supported.

2

3 error: kill.c:31:35: in function
kill_example i32 (% struct.pt_regs *): A
call to built -in function '__adddf3 ' is
not supported.

4

5 error: kill.c:31:13: in function
kill_example i32 (% struct.pt_regs *): A
call to built -in function '__truncdfsf2
' is not supported.

6

7 error: kill.c:35:38: in function
kill_example i32 (% struct.pt_regs *): A
call to built -in function '
__extendsfdf2 ' is not supported.

Listing 11: The result of compiling listing 10.

It is hard, if not impossible, to guarantee the cor-

rect execution of a program when using floating points.

Therefore, when compiling a program with floating

points that cannot be optimised away, the compiler

forcefully stops and warns that the built-in floating

point arithmetical functions are not supported.

8 PRACTICAL USE CASES
In this section we will show some practical use cases

of eBPF.

8.1 DDoS firewall
Cloudflare is currently transitioning into using XDP

as their DDoS mitigator [1]. A clear benefit of using

eBPF XDP over IPTables is the ability to match specific

patterns that are not expressible using IPTables.

Cloudflare is interested in eBPF XDP for two main

reasons. First, eBPF XDP offer a way to inspect packet

in the lowest possible layer with a very low cost to

drop packets. Second, it is possible to express firewall

rules using high-level languages like C while maintain-

ing strong guarantees about program termination and

memory access.

8.2 ExtFUSE
ExtFUSE is a framework for developing extensible user

file systems which enables applications to register spe-

cialised request handlers in the kernel [2]. This allows

the application to meet their specific operative needs,

while still having the advanced functionality of user-

space programs.

ExtFUSE leverages eBPF to load and verify the user

file system extensions, which enables the user to write

extensions in a high-level language like C. It also guar-

antees the safety and stability of the file system exten-

sions.

8.3 Cilium
Cilium is an open source system providing connectiv-

ity between applications in a secure and transparent

manner [10]. Cilium works with Linux container man-

agement systems like Kubernetes, Docker and Mesos.

Cilium aims to make Linux aware of microservices,

including their containers and APIs. This allows users

to insert flexible and powerful security, visibility and

networking control logic into the kernel using eBPF.

8.4 Katran
Katran is a high-performance XDP-based layer 4 load

balancer built by Facebook Incubator [12]. Since Katran

uses XDP, it is able to run packet handling routines

right after packet has been received by the NIC.

8.5 bcc
bcc is a toolkit for enabling efficient kernel tracing [15].

bcc uses eBPF under the hood and as such, it enables

developers to write eBPF programs more easily. BCC

9

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

Niclas Hedam

is suitable for a wide amount of tasks including perfor-

mance analysis and network traffic control.

8.6 bpftrace
bpftrace is a high-level tracing language based on eBPF

[16]. bpftrace enables developers to write one-liners to

gauge the performance of a system. It is inspired by

awk and C, and predecessor tracers such as DTrace and

SystemTap.

9 COMPUTATIONAL STORAGE
NVMe, the abbreviation for Non-Volatile Memory Ex-

press, is a specialised protocol designed exclusively for

solid-state drives (SSDs) that utilise PCIe interfaces.

This innovative protocol offers an efficient means of

accessing and transferring data between computer sys-

tems and storage devices.

With the introduction of TP 4091 in NVMe, eBPF is

expected to become the standardised method for of-

floading programs to storage. The combination of eBPF

and NVMe’s TP 4091 permits the swift offloading of pro-

grams directly to storage devices with a vendor-neutral

instruction set architecture.

As of this writing, TP 4091’s contents remain confi-

dential, making it challenging to predict how eBPF will

be used in computational storage devices. Important is-

sues such as state management and resource allocation

have yet to be resolved.

The IT University of Copenhagen is actively experi-

menting with a PCIe-based computational storage pro-

cessor (CSP) that utilises eBPF as part of the DAPHNE

project [6]. This system, known as Delilah [11], allows

user-space applications to queue up eBPF programs and

execute them on the device while taking into account

the underlying storage.

10 NEXT STEPS
This paper only scratches the surface of what you can

do with eBPF. In this section we will briefly highlight

some of the next steps an eBPF developer can take.

• High-level inspection of eBPF objects. An eBPF

developer can use tools such as bpftool to view

and debug eBPF programs and maps.

• Low-level inspection of eBPF programs. Part of
understanding and debugging the behaviour of

eBPF programs is dumping and reading the byte-

code. The eBPF developer can use tools such as

llvm-objdump to see the underlying bytecode of

an eBPF program.

• Evaluate performance of eBPF programs. Since
eBPF programs are often running in performance

sensitive environments, it is valuable for an eBPF

developer to understand the overhead of eBPF

programs. In Linux, one can enable a flag that

will collect performance metrics about loaded

eBPF programs.

• CO-RE. One of the challenges of eBPF is the

portability of code. Compile Once - Run Every-
where allows eBPF developers to compile code

on a system to be run on any other system with

varying operating systems and kernel versions.

• .. and much more. eBPF has a wide range of dif-
ferent systems and mechanisms. This includes,

for example, the ability to trace eBPF programs

with eBPF and using the virtual filesystem for

eBPF.

11 CONCLUSION
Extended Berkeley Packet Filter or eBPF is a low-level

language based on the Berkeley Packet Filter system

from 1992, but with an architecture that more closely

resembles contemporary processors.

eBPF programs can be compiled from several high-

level languages like C and Python. However, there are

key differences between typical user-space C programs

and eBPF programs. This is due to the strict security

guarantees of eBPF programs, which requires programs

to always be predictable and stable.

In this paper we showed how to write, compile and

load eBPF programs. We furthermore discussed the

different types of eBPF programs available as well as a

short overview of eBPF maps.

We discussed some of the differences between typical

user-space C programs and eBPF C programs. We saw

how these programs may seem correct and functional,

but have edge cases that prevents giving strong enough

safety guarantees.

We described several use cases of eBPF including a

DDoS firewall and file system extensions. We showed

how these project leverage eBPF and the properties of

eBPF.

10

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective

Lastly, we described the eBPF verifier and discussed

the security of it.

REFERENCES
[1] Gilberto Bertin. “XDP in practice: integrating

XDP into our DDoSmitigation pipeline”. In: Tech-
nical Conference on Linux Networking, Netdev.
Vol. 2. 2017.

[2] Ashish Bijlani and Umakishore Ramachandran.

“Extension framework for file systems in user

space”. In: 2019 USENIX Annual Technical Confer-
ence (USENIX ATC 19). 2019, pp. 121–134.

[3] Randal E. Bryant and David R. O’Hallaron. Com-
puter Systems: A Programmer’s Perspective. Global
Edition. Pearson, 2016. isbn: 9781292101767.

[4] D. Calavera and L. Fontana. Linux Observability
with BPF: Advanced Programming for Performance
Analysis and Networking. O’Reilly Media, Incor-

porated, 2019. isbn: 9781492050209.

[5] Cilium.What is eBPF? An Introduction and Deep
Dive into the eBPF Technology. url: https://ebpf.
io/what-is-ebpf/ (visited on 12/14/2020).

[6] Patrick Damme et al. “DAPHNE: AnOpen and Ex-

tensible System Infrastructurefor Integrated Data

Analysis Pipelines”. en. In: 12th Annual Confer-
ence on Innovative Data Systems Research (CIDR
‘22). Santa Cruz, California, USA: CIDR, Jan. 2022.
url: https://www.cidrdb.org/cidr2022/papers/p4-

damme.pdf.

[7] Henri Maxime Demoulin et al. “Detecting Asym-

metric Application-layer Denial-of-Service At-

tacks In-Flight with FineLame”. In: 2019 USENIX
Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, 2019, pp. 693–

708. isbn: 9781939133038. url: https : / /www .

usenix . org / conference / atc19 / presentation /

demoulin.

[8] Matt Fleming. A thorough introduction to eBPF.
2017. url: https : / / lwn . net / Articles / 740157/

(visited on 11/10/2020).

[9] Stephen J. Friedl. Using GNU C __attribute__. url:
http://unixwiz.net/techtips/gnu-c-attributes.

html (visited on 11/03/2020).

[10] Thomas Graf. How to Make Linux Microservice-
Aware with Cilium and eBPF. 2018. url: https :
//www.youtube.com/watch?v=_Iq1xxNZOAo

(visited on 12/10/2020).

[11] Niclas Hedam et al. “Delilah: eBPF-offload on

Computational Storage”. en. In: 19th International
Workshop on Data Management on New Hardware
(DaMoN ’23). Seattle, Washington, USA: DaMoN,

2023. doi: 10.1145/3592980.3595319. url: https:

//hed.am/papers/2023-DaMoN.pdf.

[12] Facebook Incubator. facebookincubator / katran.
2021. url: https://github.com/facebookincubator

/katran (visited on 02/18/2021).

[13] S. Miano et al. “Creating Complex Network Ser-

viceswith eBPF: Experience and Lessons Learned”.

In: 2018 IEEE 19th International Conference on
High Performance Switching and Routing (HPSR).
2018.

[14] NVD - CVE-2017-16995. 2017. url: https://nvd.
nist.gov/vuln/detail/CVE-2017-16995.

[15] IO Visor Project. iovisor / bcc. 2021. url: https:
//github.com/iovisor/bcc (visited on 02/18/2021).

[16] IO Visor Project. iovisor / bpftrace. 2021. url: h
ttps://github.com/iovisor/bpftrace (visited on

02/18/2021).

[17] Alexei Starovoitov. daedfb22451d. 2014. url: ht
tps://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/commit/?id=daedfb22451dd

02b35c0549566cbb7cc06bdd53b.

[18] Alexei Starovoitov. Lifetime of BPF objects. 2018.
url: https://facebookmicrosites.github.io/bpf /

blog/2018/08/31/object-lifetime.html (visited on

02/17/2021).

A EXAMPLE SETUP
When compiling eBPF programs, a set of helper func-

tions and libraries are needed. In this section, we will

go through all the steps necessary to compile any of the

examples in this paper. Bear in mind that as the kernel,

operating systems and architecture of eBPF continues

to be developed, this walk-through may become out-

dated. The walk-through was written in May 2023 and

tested on an Ubuntu 22.04 LTS with kernel 5.19 and

libbpf 1.2.

To compile the examples, you will need the following

dependencies.

• build-essential, git, make – These tools provide

the necessary framework for compilation. Git

will be used to clone libbpf.

• gcc, clang, llvm – GCC is used to compile the

kernel, while clang is used to compile eBPF code.

11

https://ebpf.io/what-is-ebpf/
https://ebpf.io/what-is-ebpf/
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://www.usenix.org/conference/atc19/presentation/demoulin
https://www.usenix.org/conference/atc19/presentation/demoulin
https://www.usenix.org/conference/atc19/presentation/demoulin
https://lwn.net/Articles/740157/
http://unixwiz.net/techtips/gnu-c-attributes.html
http://unixwiz.net/techtips/gnu-c-attributes.html
https://www.youtube.com/watch?v=_Iq1xxNZOAo
https://www.youtube.com/watch?v=_Iq1xxNZOAo
https://doi.org/10.1145/3592980.3595319
https://hed.am/papers/2023-DaMoN.pdf
https://hed.am/papers/2023-DaMoN.pdf
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://nvd.nist.gov/vuln/detail/CVE-2017-16995
https://nvd.nist.gov/vuln/detail/CVE-2017-16995
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=daedfb22451dd02b35c0549566cbb7cc06bdd53b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=daedfb22451dd02b35c0549566cbb7cc06bdd53b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=daedfb22451dd02b35c0549566cbb7cc06bdd53b
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=daedfb22451dd02b35c0549566cbb7cc06bdd53b
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html
https://facebookmicrosites.github.io/bpf/blog/2018/08/31/object-lifetime.html

PREPRINT
-

May
26,

2023

Niclas Hedam

LLVM is used to transform LLVM IR code to BPF

byte-code.

• libelf-dev, gcc-multilib – These libraries are re-

quired by libbpf.

Start out by retrieving new lists of packages.

$ sudo apt-get update

After completion of the update, install all of the de-

pendencies listed above.

$ sudo apt install -y build-essential git
make gcc clang llvm libelf-dev
gcc-multilib make

Download a copy of libbpf. Wewill fetch only a single

commit containing the release of version 1.2.

$ git clone --depth 1 --single-branch
--branch v1.2.0 \
https://github.com/libbpf/libbpf libbpf

Compile libbpf and install the headers locally.

$ make --directory=libbpf/src all

$ DESTDIR=root make --directory=libbpf/src
install_headers

Now that we have all the dependencies in place, we

can continue to the eBPF-related files. Grab the loader

from listing 2. We will save it as loader.c. We also

need to grab one of the examples. Let us grab the kill-

example from listing 1 and save as kill.c. Please be
aware that copying code from a PDF may not always

work as expected.

Then, we need to compile the eBPF program using

clang.

$ clang -target bpf -S -D __BPF_TRACING__
-I./libbpf/src/root/usr/include/ -Wall
-Werror -O2 -emit-llvm -c -g kill.c

$ llc -march=bpf -filetype=obj -o kill.o
kill.ll

Compile the loader.

$ gcc -I./libbpf/src/root/usr/include/
-L./libbpf/src/ -o ebpf loader.c \
-Wl ,-rpath=./libbpf/src/ -lbpf -lelf

This is all we need to do to. All that is left is to actu-

ally run the loader program.

$ sudo ./ebpf &

$ sudo cat
/sys/kernel/debug/tracing/trace_pipe

You may have to press enter after loading the pro-

gram.

To stop the eBPF program, stop the cat command

using CTRL + C and run fg. This will bring the eBPF

loader back to the front and you can stop it using CTRL

+ C.

B EBPF PROGRAM TYPES
1 enum bpf_prog_type {
2 BPF_PROG_TYPE_UNSPEC ,
3 BPF_PROG_TYPE_SOCKET_FILTER ,
4 BPF_PROG_TYPE_KPROBE ,
5 BPF_PROG_TYPE_SCHED_CLS ,
6 BPF_PROG_TYPE_SCHED_ACT ,
7 BPF_PROG_TYPE_TRACEPOINT ,
8 BPF_PROG_TYPE_XDP ,
9 BPF_PROG_TYPE_PERF_EVENT ,
10 BPF_PROG_TYPE_CGROUP_SKB ,
11 BPF_PROG_TYPE_CGROUP_SOCK ,
12 BPF_PROG_TYPE_LWT_IN ,
13 BPF_PROG_TYPE_LWT_OUT ,
14 BPF_PROG_TYPE_LWT_XMIT ,
15 BPF_PROG_TYPE_SOCK_OPS ,
16 BPF_PROG_TYPE_SK_SKB ,
17 BPF_PROG_TYPE_CGROUP_DEVICE ,
18 BPF_PROG_TYPE_SK_MSG ,
19 BPF_PROG_TYPE_RAW_TRACEPOINT ,
20 BPF_PROG_TYPE_CGROUP_SOCK_ADDR ,
21 BPF_PROG_TYPE_LWT_SEG6LOCAL ,
22 BPF_PROG_TYPE_LIRC_MODE2 ,
23 BPF_PROG_TYPE_SK_REUSEPORT ,
24 BPF_PROG_TYPE_FLOW_DISSECTOR ,
25 BPF_PROG_TYPE_CGROUP_SYSCTL ,
26 BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE ,
27 BPF_PROG_TYPE_CGROUP_SOCKOPT ,
28 BPF_PROG_TYPE_TRACING ,
29 BPF_PROG_TYPE_STRUCT_OPS ,
30 BPF_PROG_TYPE_EXT ,
31 BPF_PROG_TYPE_LSM ,
32 BPF_PROG_TYPE_SK_LOOKUP ,
33 BPF_PROG_TYPE_SYSCALL ,
34 };

Listing 12: The declaration of all eBPF program
types. From bpf.h of kernel version 6.2.11.

C EBPF MAP TYPES
12

P
R
E
P
R
I
N
T
-
M
a
y
2
6
,
2
0
2
3

eBPF - From a Programmer’s Perspective

1 enum bpf_map_type {
2 BPF_MAP_TYPE_UNSPEC ,
3 BPF_MAP_TYPE_HASH ,
4 BPF_MAP_TYPE_ARRAY ,
5 BPF_MAP_TYPE_PROG_ARRAY ,
6 BPF_MAP_TYPE_PERF_EVENT_ARRAY ,
7 BPF_MAP_TYPE_PERCPU_HASH ,
8 BPF_MAP_TYPE_PERCPU_ARRAY ,
9 BPF_MAP_TYPE_STACK_TRACE ,
10 BPF_MAP_TYPE_CGROUP_ARRAY ,
11 BPF_MAP_TYPE_LRU_HASH ,
12 BPF_MAP_TYPE_LRU_PERCPU_HASH ,
13 BPF_MAP_TYPE_LPM_TRIE ,
14 BPF_MAP_TYPE_ARRAY_OF_MAPS ,
15 BPF_MAP_TYPE_HASH_OF_MAPS ,
16 BPF_MAP_TYPE_DEVMAP ,
17 BPF_MAP_TYPE_SOCKMAP ,
18 BPF_MAP_TYPE_CPUMAP ,
19 BPF_MAP_TYPE_XSKMAP ,
20 BPF_MAP_TYPE_SOCKHASH ,

21 BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED ,
22 BPF_MAP_TYPE_CGROUP_STORAGE =

BPF_MAP_TYPE_CGROUP_STORAGE_DEPRECATED ,
23 BPF_MAP_TYPE_REUSEPORT_SOCKARRAY ,
24 BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE ,
25 BPF_MAP_TYPE_QUEUE ,
26 BPF_MAP_TYPE_STACK ,
27 BPF_MAP_TYPE_SK_STORAGE ,
28 BPF_MAP_TYPE_DEVMAP_HASH ,
29 BPF_MAP_TYPE_STRUCT_OPS ,
30 BPF_MAP_TYPE_RINGBUF ,
31 BPF_MAP_TYPE_INODE_STORAGE ,
32 BPF_MAP_TYPE_TASK_STORAGE ,
33 BPF_MAP_TYPE_BLOOM_FILTER ,
34 BPF_MAP_TYPE_USER_RINGBUF ,
35 BPF_MAP_TYPE_CGRP_STORAGE ,
36 };

Listing 13: The declaration of all eBPF map types.
From bpf.h of kernel version 6.2.11.

13

	Abstract
	1 Acknowledgements
	2 Introduction
	3 Architecture
	3.1 Scope
	3.2 Compilation
	3.3 Loading

	4 Program types
	4.1 Networking
	4.2 Tracing

	5 eBPF Maps
	5.1 Definition
	5.2 Usage

	6 eBPF Verifier
	6.1 Hardening
	6.2 Risky Operations

	7 Practical differences
	8 Practical use cases
	8.1 DDoS firewall
	8.2 ExtFUSE
	8.3 Cilium
	8.4 Katran
	8.5 bcc
	8.6 bpftrace

	9 Computational Storage
	10 Next Steps
	11 Conclusion
	A Example setup
	B eBPF program types
	C eBPF map types

